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[1] The purpose of this paper is to present a learning
algorithm to classify data with nonlinear characteristics.
The Support Vector Machine (SVM) is a novel type of
learning machine based on statistical learning theory
[Vapnik, 1998]. The support vector machine (SVM)
implements the following idea: It maps the input vector
X into a high-dimensional feature space Z through some
nonlinear mapping, chosen a priori. In this space, an
optimal separating hyperplane is constructed to separate
data groupings. The support vector machine (SVM)
learning method can be used to classify seismic data
patterns for exploration and reservoir characterization
applications. The SVM is particularly good at classifying
data with nonlinear characteristics. As an example the
SVM method is applied to AVO classification of gas sand
and wet sand. INDEX TERMS: 0902 Exploration

Geophysics: Computational methods, seismic; 3220

Mathematical Geophysics: Nonlinear dynamics; 3299

Mathematical Geophysics: General or miscellaneous.

Citation: Li, J., and J. Castagna (2004), Support Vector
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1. Introduction

[2] In geophysical data interpretation the sample popula-
tion to which training can be applied is often too small for
statistically significant prediction. Conventional statistical
pattern classification doesn’t perform well in this case. The
Support Vector Machine (SVM) based on statistical learning
theory [Vapnik, 1998] deals with the problem of small
sample statistics. The theory for controlling the generaliza-
tion ability of learning machines is devoted to constructing
an inductive principle for minimizing the risk functional
using a small sample of training instances.

2. Learning Machine Principle

[3] The problem of learning is that of choosing from a
given set of functions f (x, a) the one that best approximates
the supervisor’s response. The selection of the desired
function is based on a training set of L independent and
identically distributed observations drawn according to
F(x, y) = F(x)F(yjx):

x1; y1ð Þ; � � � ; xL; yLð Þ ð1Þ

[4] In order to choose the best available approximation to
the supervisor’s response, one measures the loss, or dis-
crepancy L( y, f (x, a)) between the response y of the
supervisor to a given input x and the response f (x,a)
provided by the learning machine. Consider the expected
value of the loss, given by risk functional

R að Þ ¼
Z

L y; f x;að Þð ÞdF x; yð Þ ð2Þ

[5] The goal is to find the function f (x,a0) that minimizes
the risk functional R(a) (over the class of functions f(x,a))
in the situation where the joint probability distribution
function F(x,y) is unknown and the only available informa-
tion is contained in the training set (1).
[6] For a set of functions f(x, a), statistical approaches

minimize the functional

R að Þ ¼
Z

L y� f x;að Þð Þdp x; yð Þ ð3Þ

Where L(u) is a given loss function if the probability
measure P(x, y) is unknown.
[7] In the case of a small population, the empirical risk

minimization principle suggests minimizing the functional

Remp að Þ ¼ 1

L

XL
i¼1

L yi � f xi;að Þð Þ ð4Þ

instead of the functional (3).The structural risk minimization
method defines where a structure on a set of functions
f (x, a) has been defined as

S1 � � � � � Sn ð5Þ

and functional (4) is minimized on the approximately
chosen element Sk of this structure.
[8] We now consider a new basic function instead of the

empirical risk functional (4) and use this functional in the
structural risk minimization scheme.
[9] We construct (using data) vicinity functions v(xi) of

the vectors xi for all training vectors and then using these
vicinity functions we construct the vicinal risk functional

V að Þ ¼ 1

L

XL
i¼1

L yi �
1

vi

Z
v xið Þ

f x;að Þdx
 !

ð6Þ

Minimizing functional (6) instead of functional (3) is called
the vicinal risk minimization (VRM) method.
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[10] We apply the VRM method to the two class {�1, 1}
pattern recognition problem. Consider the set of indicator
functions

y ¼ sign f x;að Þ½ 	 ð7Þ

where we minimized the empirical functional (4) with the
loss function jy � f (x, a)j.
[11] The input data may be nonlinear and difficult to

separate in input space (Figure 1). After transformation, we
desire the data to be linear and separable in the feature space
(Figure 2). We put input vectors x into feature vectors z and
in the feature space construct a hyperplane

w; zð Þ þ b ¼ 0 ð8Þ

the separates data

x1; y1ð Þ; � � � ; xL; yLð Þ;

which are image in the feature space of the training dataset (1).
[12] Our goal is to find the function f (x, a) satisfying the

constraints

yi

Z
f x;að Þp x xi;ri

��� �
dx � 1� xi ð9Þ

(here p(xjxi, ri) are distribution functions where they define
the parameters of position and width, xi are nonnegative
slack variables) whose image in the feature space is a linear
function

l zð Þ ¼ w*; zð Þ þ b ð10Þ

that minimizes the functional

W wð Þ ¼ w;wð Þ þ C
XL
i¼1

xi ð11Þ

(here C is a given upper boundary value) subject to
constraint (9).

3. Computation Approach

[13] To construct the optimal hyperplane one has to
separate the vector xi of the training set

x1; y1ð Þ; � � � ; xL; yLð Þ

belonging to two different classes y = {�1, 1} using the
hyperplane with the smallest norm of the coefficients.
[14] To find this hyperplane we have to solve the

following quadratic programming problem: minimize the
functional

� wð Þ ¼ 1

2
w � wð Þ ð12Þ

under the constraints of inequality type

yi xi � wð Þ � b½ 	 � 1; i ¼ 1; � � � ; L ð13Þ

[15] The solution to this optimization problem is given by
the saddle point of the Lagrange functional (Lagrangian):

L w; b;að Þ ¼ 1

2
w � wð Þ �

XL
i¼1

ai xi � wð Þ � b½ 	 yi � 1f g ð14Þ

where the ai are Lagrange multipliers. The Lagrangian has
to be minimized with respect to w and b and maximized
with respect to ai > 0.
[16] The optimal hyperplane (Figure 3) has the following

properties:
[17] (1) The coefficients ai

0 for the optimal hyperplane
should satisfy the constructs

XL
i¼1

a0
i yi ¼ 0; a0

i � 0; i ¼ 1; � � � ;L ð15Þ

Figure 1. The nonlinear nonseparable data in input space.

Figure 2. The linear separable data in feature space.

Figure 3. The optimal hyperplane and support vectors.
The middle red line is the optimal hyperplane. The samples
occur on margins are support vectors.
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[18] (2) The optimal hyperplane (vector w0) is a linear
combination of the vectors of the training set

w0 ¼
XL
i¼1

yia0
i xi; a0

i � 0; i ¼ 1; � � � ;L ð16Þ

[19] (3) Moreover, only the so-called support vectors can
have nonzero coefficient ai

0 in the expansion of w0. The
support vectors are the vectors making (13) achieve equal-
ity. Therefore, for support vectors (s.v.), we obtain

w0 ¼
X
s:v:

yia0
i xi; a0

i � 0; ð17Þ

The necessary and sufficient conditions of the optimal
hyperplane are that the separating hyperplane satisfy the
conditions

a0
i xi � w0ð Þ � b0½ 	 yi � 1f g ¼ 0; i ¼ 1; � � � ;L ð18Þ

[20] Putting the expression for w0 into the Lagrangian
and taking into account the Kuhn-Tucker conditions, one
obtains the functional

W að Þ ¼
XL
i¼1

ai �
1

2

XL
i;j

aiajyiyj xi � xj
� �

; ð19Þ

under the constraint

a0
i � 0; i ¼ 1; � � � ; L ð20Þ

XL
i¼1

a0
i yi ¼ 0: ð21Þ

Thus, to construct the optimal hyperplane we have to solve
a quadratic programming problem: Maximize the quadratic
form (19) under constraints (20) and (21).
[21] The separating rule, based on the optimal hyper-

plane, is the following indicator function

f xð Þ ¼ sign
X
s:v:

yia0
i xi � xð Þ � b

 !
; ð22Þ

where xi are the support vectors, ai
0 are the corresponding

Lagrange coefficients, and b is the constraint (threshold).

4. AVO Classification

[22] The AVO reflection coefficient variation with angle
of incidence, R(q) can be written in Shuey’s form:

R qð Þ ¼ Aþ B sin2 q ð23Þ

where A is the AVO intercept, and B is the AVO gradient.
Crossplotting AVO intercept (A) and gradient (B) can
sometimes reveal anomalous AVO behavior caused by
hydrocarbons. Hydrocarbon bearing sands may be classified
according to their location in the A-B plane, [Castagna et
al., 1998]. In this paper, however, we will attempt to
differentiate only two situations - gas sands or wet sands.
[23] Theoretically, gas sands may occur in any quadrant

of the A-B plane. We now consider some known gas sand
and wet sand normalized pairs of intercepts and gradients
(entries 1–4 in Table 1) and some pairs from unknown
reflections (entries 5–8). We classify the reflections such
that +1 represents a gas sand and �1 represents a wet sand.
[24] The 8 entries are shown in Figure 4. Suppose the

classes of examples 1–4 are known a priori and their A-B
distribution is as displayed in Figure 5. This is a typical
class 3 AVO anomaly [Rutherford and Williams, 1989].
Obviously, the classes are not linearly separable in input
space [Russell et al., 2002].

Table 1.

Inputs

classA B

1 Top Gas �1 �1 +1
2 Base Wet �1 +1 �1
3 Top Wet +1 �1 �1
4 Base Gas +1 +1 +1
5 �1 �0.5
6 �0.8 0.8
7 0.75 0.75
8 0.25 �0.25

Figure 4. All input data.

Figure 5. The training data their classes are known.

Table 2.

Inputs

classA B

5 �1 �0.5 +1
6 �0.8 0.8 �1
7 0.75 0.75 +1
8 0.25 �0.25 �1
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[25] The classification of entries 1–4 are known, entry 1
is top gas sand which class is +1, entry 2 is wet sand which
class is �1, entry 3 is wet sand which class is �1, entry 4 is
gas sand which class is +1. From Table 1, we can see that
gas sands occur in quadrants I and III, wet sands are in
quadrant II and IV.
[26] Now we use entries 1–4 as an input dataset to train

the SVM (solve a Quadratic Programming problem, equa-
tion (19)–(21)) to classify this prior dataset into gas sand
(+1) and wet sand (�1) for finding Lagrange multipliers ai

0

and support vectors xi. While a correct classification is made
to prior dataset entries 1–4, we obtain a group of Lagrange
multipliers ai

0 and support vectors xi as well as their
classification indicators yi, (i = 1,. . ., ‘). Then unknown
dataset entries 5–8 are classified by equation (22) to
recognize their pattern. The classified results are shown in
Table 2. Entry 5 occurs in quadrant III and entry 7 is in

quadrant I and are classified as gas sands; entry 6 is in
quadrant II and entry 8 is in quadrant IV and are classified
as wet sands. Here, for the two class problem in the
intercept-gradient plane of AVO analysis, unknown dataset
entries 5–8 are correctly classified according to a learned
classification from prior data entries 1–4. The final classi-
fied result is shown in Figure 6.

5. Conclusions

[27] We present an approach to classify seismic attributes
using the Support Vector Machine (SVM) based on statis-
tical learning theory. The SVM algorithm maps nonlinear
nonseparable data in input space into a multi-dimensional
feature space in which a hyperplane separates the mapped
data. To construct the optimal hyperplane, a quadratic
programming problem is solved to find support vectors. A
simple intercept and gradient AVO classification problem
illustrates this approach. The result shows that SVM clas-
sification is a useful tool for recognizing non-linear seismic
patterns.

References
Castagna, J. P., H. W. Swan, and D. J. Foster (1998), Framework for AVO
gradient and intercept interpretation, Geophysics, 63, 948–956.

Russell, B., C. Ross, and L. Lines (2002), Neural Networks and AVO: 72th
Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts.

Rutherford, S. R., and R. H. Williams (1989), Amplitude-versus-offset
variations in gas sands, Geophysics, 54, 680–688.

Vapnik, V. (1998), Statistical Learning Theory, John Wiley & Sons Inc.

�����������������������
J. Li and J. Castagna, School of Geology and Geophysics, University of

Oklahoma, USA. ( jiakang_li@yahoo.com; castagna@ou.edu)

Figure 6. The final classified result.
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