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ABSTRACT

A basis pursuit inversion of seismic reflection data for re-
flection coefficients is introduced as an alternative method of
incorporating a priori information in the seismic inversion
process. The inversion is accomplished by building a dic-
tionary of functions representing reflectivity patterns and
constituting the seismic trace as a superposition of these
patterns. Basis pursuit decomposition finds a sparse number
of reflection responses that sum to form the seismic trace.
When the dictionary of functions is chosen to be a
wedge-model of reflection coefficient pairs convolved with
the seismic wavelet, the resulting reflectivity inversion is a
sparse-layer inversion, rather than a sparse-spike inversion.
Synthetic tests suggest that a sparse-layer inversion using
basis pursuit can better resolve thin beds than a comparable
sparse-spike inversion. Application to field data indicates
that sparse-layer inversion results in the potentially im-
proved detectability and resolution of some thin layers and
reveals apparent stratigraphic features that are not readily
seen on conventional seismic sections.

INTRODUCTION

In conventional seismic deconvolution, the seismogram is con-
volved with a wavelet inverse filter to yield band-limited reflectiv-
ity. The output reflectivity is band limited to the original frequency
band of the data so as to avoid blowing up noise at frequencies
with little or no signal. It has long been established (e.g., Riel
and Berkhout, 1985) that sparse seismic inversion methods can pro-
duce output reflectivity solutions that contain frequencies that are
not contained in the original signal without necessarily magnifying
noise at those frequencies. It is well known (e.g., Tarantola, 2004)

that applying valid constraints in seismic inversion can stably in-
crease the bandwidth of the solution.
However, incorporation of the a priori information in the reflec-

tivity inversion of seismic traces can be problematic. A common
way of incorporating prior knowledge is to build a starting model
biased by that information and to let the inversion process perturb
the initial starting model and converge to a solution (e.g., Cooke and
Schneider, 1983). The individual layers represented in the starting
model can have hard or soft constraints assigned. This kind of meth-
od can work very well when the starting model is close to the correct
solution. Typically, the starting model is obtained by spatially inter-
polating well logs along selected horizons. Unfortunately, these hor-
izons must be picked on the original seismic data. If waveform
interference patterns change laterally, horizon picks on a constant
portion of a waveform (typically chosen to be peaks, troughs, or
zero crossings) can be in error, resulting in an incorrect starting
model and a potentially erroneous inversion. Similarly, if velocities
and/or impedances for the inversion interval change laterally in a
manner different from that resulting from the interpolation proce-
dure, interpolated well logs may again be significantly in error, and
the inverse process may converge to the wrong minimum. These
problems may be ameliorated with a Monte Carlo approach, but
such an approach cannot correct the fundamental nonuniqueness
of the process that may cause minimums other than the correct
one to have similar errors. A means of biasing the results toward
expected reflectivity patterns is needed without relying on possibly
erroneous manual interpretations or spatial interpolations.
Nguyen and Castagna (2010) used matching pursuit decomposi-

tion (MPD) to decompose a seismic trace into a superposition of
reflectivity patterns observed in and derived from existing well con-
trol. Matching pursuit decomposition (1) correlates a wavelet dic-
tionary against a seismogram and finds the location, scale (i.e.,
center frequency), and amplitude of the best-fit wavelet, (2) sub-
tracts the best-fit wavelet and records its characteristics in a table,
and (3) repeats the processes on the residual trace until the residual
energy falls below a selected threshold. For spectral decomposition,
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the spectra of the best-fit wavelets from the table are summed as a
function of time to form the time-frequency analysis. For seismic
inversion, the wavelet dictionary consists of seismic reflection pat-
terns derived from well logs, which are matched to the seismic trace.
In effect, pattern recognition is used to recognize seismic patterns
derived from well logs, resulting in what is equivalent to a data
adaptive starting model. This ensures that the starting model is
not misaligned with the seismic data to be inverted, as may occur
when well logs are spatially interpolated. The matching pursuit
method has some limitations, especially when the dictionary ele-
ments are not orthogonal. Nguyen and Castagna (2010) conse-
quently found lateral instability in the raw MPD solution and
had to employ reprojection to obtain laterally stable results. Wang
(2007, 2010) developed a multichannel MPD (MCMP) spectral de-
composition assuming some degree of lateral coherence to improve
the uniqueness and spatial continuity of matching pursuit spectral
decomposition. As applied to the seismic inversion problem, such
an approach has potential limitations as it (1) could result in some
loss of spatial resolution when the geology is, in fact, not contin-
uous and (2) can still exhibit hard lateral jumps when the path-
dependent MPD algorithm switches from one initial match to
another. For seismic inversion purposes, a more laterally stable
approach that operates on a single trace at a time, without the need
for a posteriori selection of laterally consistent possible solutions,
would be advantageous.
Basis pursuit decomposition (BPD) has many advantages over

MPD (Chen et al., 2001); it handles interferences between diction-
ary elements better, it is computationally more efficient, and, by
introducing a sparsity norm and regularization parameter into the
objective functions, it can exhibit good lateral stability even when
dictionary elements are not orthogonal.
In this study, we investigate the use of BPD to perform seismic

inversion. We use the algorithm of Chen et al. (2001) to decompose
the seismic trace with a nonorthogonal wavelet dictionary consist-
ing of even and odd thin layer seismic responses. The output reflec-
tivity series is then formed by summing reflection coefficient pairs
that are shifted and multiplied by scalars with translations and coef-
ficients output by the basis pursuit algorithm. The basis pursuit al-
gorithm is an L1 norm optimization that was originally developed as
a compressive sensing technique. The solution consists of three
parts: (1) linear programming transforms the L1 optimization pro-
blem into a constrained least square problem, (2) duality theory sets
up an array containing primal, dual, and gap equations to be solved,
and (3) a primal-dual log-barrier algorithm implements a Gauss-
Newton step workflow to solve the equations array.
Much of the advantage of BPD over MPD is related to the fact

that BPD finds a single global solution, whereas MPD is a path-
dependent process. As MPD iteratively subtracts matched wavelets
from the seismogram, the order in which wavelets are subtracted
may vary greatly between similar seismic traces. A change in
the order in which the wavelets are subtracted can result in an en-
tirely different solution. Slight variations in adjacent input traces (as
could result from noise) could cause geologically unreasonable
jumps from one solution to another. Furthermore, for interfering
wavelets, the location and center frequency of the best wavelet
match found by MPD may not correspond to the time location
or center frequency of the reflecting seismic wavelets. If a wavelet
of the wrong frequency is subtracted, nearby wavelets found by
MPD must compensate for this error, often by being wrong in

the opposite direction, and can result in the addition of small satel-
lite wavelets to the solution that are needed to minimize the result-
ing error. In data compression applications, this results in less than
optimal compression but is not necessarily a serious problem. In
spectral decomposition using MPD, however, this can cause time
asymmetry in the time-frequency decomposition of thin layers, even
when the input is time-symmetrical. This results in serious lateral
instability in spectral decomposition and inversion using trace-by-
trace MDP (Wang, 2010; Nguyen and Castagna, 2010). To avoid
these problems, we investigate the use of basis pursuit inversion
(BPI) to invert a seismic trace for a reflectivity series which can
be integrated to give the band-limited seismic impedance model.
As a first step, we study the use of a very basic reflection pattern

dictionary consisting of a wedge-model of reflection coefficient
pairs convolved with the seismic wavelet. As any pair of reflection
coefficients can be represented as the sum of odd and even reflec-
tion coefficient pairs (e.g., Puryear and Castagna, 2008), there will
be two dictionary elements (odd and even) for each thickness re-
presented in the wedge-model and the number of elements in the
dictionary will be twice the number of thicknesses. The thickness
range built into the dictionary then becomes a constraint on the pos-
sible outcomes. The direct use of more complex well-log derived
reflectivity patterns in the BPI dictionary is left as an objective
of future research.
The use of BPI with a wedge dictionary is essentially a sparse-

layer inversion. It can be argued that such an inversion may resolve
thin beds differently than a sparse-spike type of inversion (e.g.,
Oldenburg et al., 1983), which imposes some specified degree of
sparsity and, thus, indirectly places some limitation on the spacing
of reflections. In this paper we will compare BPI sparse-layer in-
version with conventional sparse-spike inversion on synthetic
and real data to assess the relative ability of BPI to resolve thin beds
and reveal fine stratigraphic features.

BASIC THEORY

For simplicity, the forward model is assumed to be a simple con-
volution of a stationary seismic wavelet and the reflectivity. The
seismic trace sðtÞ is thus given by

sðtÞ ¼ wðtÞ � rðtÞ þ nðtÞ; (1)

where wðtÞ is the seismic wavelet, rðtÞ is the reflectivity series, and
nðtÞ is the noise. This model assumes that the earth structure can be
represented adequately by a series of planar horizontal layers of
constant impedance with reflections generated at the boundaries be-
tween adjacent layers. To further simplify the inversion, we assume
that the wavelet is known.
Because seismic wavelets are band limited and seismic data are

finite and inaccurate, there exists an infinite number of reflectivity
series that can fit the data equally well. Thus, the inversion of sðtÞ
for rðtÞ is nonunique. To find a “best” solution among all possibi-
lities, additional information is required. This best solution should
fit the data within some specified tolerance and best satisfy a given
set of constraints.
The need to fit the data leads to a least-squares solution. The ap-

plication of constraints is a key aspect of most inverse problems.
Such constraints usually assume some prior information about
the type of solution one desires. Prior information is used to discard
or weight against implausible possible solutions.
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The inverse problem of determining the reflectivity series from
a seismic trace and a known wavelet involves two tasks: (1) loca-
tion of the reflection coefficients and (2) estimation of their am-
plitudes. Various methods use different search strategies to locate
the spikes and rely on the optimization of different cost functions
to satisfy a probabilistic model for the reflectivity (Kormylo and
Mendel, 1980; Kaaresen and Taxt, 1998). Other methods proceed
to optimize some norm that forces the results to be sparse
(Oldenburg et al., 1982; Riel and Berkhout, 1985; Debeye and
van Riel, 1990; Sacchi et al., 1994; Hu et al., 2008). Mosegaard
and Vestergaard, 1991 address the problem using sparse prior in-
formation. In their methods, numerical instabilities in the linear
least-squares stage are handled by introducing constraints in the
spike locations; for example, two spikes cannot be closer than
a predetermined distance.
In exploration geophysics practice, conventional sparse-spike in-

version (SSI) is commonly used to produce sparse reflectivity series
without the need for a starting model. Here, the term “sparse” is
used to describe a time series that has a relatively small number
of nonzero values. All else being constant, the greater the sparse-
ness, the fewer the number of layers in the inversion result. This
limits the spacing between reflection coefficients, thereby poten-
tially discriminating against solutions with thin layers. This possible
trade-off between sparseness and resolution can potentially restrict
the ability of SSI to resolve thin layers.
Partyka (2005), Portniaguine and Castagna (2005), and Puryear

and Castagna (2008) discuss thin-bed inversion in the frequency
domain. Partyka coined the term “spectral inversion” for this pro-
cedure. Chopra et al. (2006, 2009) show many examples of the use
of spectral inversion. Puryear and Castagna (2008) concentrate on
the application of spectral inversion to the problem of thin layer
thickness determination. Spectral inversion utilizes spectral decom-
position to localize time-varying spectral interference patterns cre-
ated by a limited number of superposed layer responses and to
invert these local frequency spectra for the layer thicknesses and
reflection coefficients. The application of such a sparse-layer inver-
sion in the frequency domain is complicated by windowing effects,
and it could be advantageous to perform equivalent operations di-
rectly in the time domain. This can be accomplished using basis
pursuit decomposition into individual layer responses. However,
frequency-domain implementation can have greater flexibility
and computational efficiency than our time-domain implementa-
tion, in that different frequency bands (or other segmentations of
the spectrum) can be weighted differently with ease. Our intention
here is not to show that basis pursuit decomposition is superior or
comparable to any particular spectral inversion algorithm (we make
no such claim in that regard) but, rather, to present it as an alter-
native approach that, with further development (e.g., following
Nguyen and Castagna, 2010), could more readily incorporate well
reflectivity patterns. We compare the basis pursuit inversion method
in detail to conventional sparse-spike inversion to show the potential
added value in a sparse-layer inversion, irrespective of exactly how
it is implemented.

BASIS PURSUIT INVERSION (BPI)

The subsurface is assumed to consist of horizontal isotropic
homogeneous layers. Each trace of the poststack seismic image
is considered to be the convolution of the seismic wavelet with a
reflectivity series. To allow the seismic wavelet to vary temporally,

the convolutional model (equation 1) can also be written for seismic
reflection data as

s ¼ Wrþ n; (2)

where s is a column vector representing the seismogram, r is the
reflectivity series column vector,W represents the diagonal wavelet
kernel matrix, and n is a noise vector. This convolutional operation
has the well-known form:

d ¼ Gmþ n (3)

where d is the data vector, m is the model parameters, G is the
kernel, and n is the noise.
Basis pursuit (BP) solves for parameters in equation 3 by simul-

taneously minimizing both the L2 norm of error term and the L1
norm of the solution:

min½kd −Gmk2 þ λkmk1�. (4)

The basis pursuit algorithm used in this paper is described in detail
by Chen et al. (2001). Here we describe how basis pursuit is used to
perform seismic inversion.
Any reflectivity series can be decomposed into a summation of

impulse pairs (Bork and Wood, 2001). BPI utilizes dipole decom-
position to represent the reflectivity series as a sum of even and odd
impulse pairs multiplied by scalars.
The top and base reflectors of a layer can be represented as

two impulse functions cδðtÞ and dδðt þ nΔtÞ, where nΔt is time-
thickness of thin-bed, Δt is sample rate, and c and d are the two
reflection coefficients. Dipole decomposition is used to decompose
each reflector pair into one even pair re and one odd pair ro with
corresponding coefficients a and b, varying from −1 to þ1 times a
scale factor, which can be expressed as equations 5 and 6, also in
Figure 1a:

re ¼ δðtÞ þ δðt þ nΔtÞ; ro ¼ δðtÞ − δðt þ nΔtÞ; (5)

cδðtÞ þ dδðt þ nΔtÞ ¼ are þ bro. (6)

The layer thickness is typically unknown. To include all possible
bed thicknesses, n varies from zero to the number N with NΔt
representing the maximum layer time-thickness. This comprises
the wedge dictionary. Thicknesses greater than the maximum thick-
ness are readily accommodated by including a single impulse
in the dictionary (this corresponds to a zero thickness even impulse
pair).
The wedge models, including the odd and even wedges, are a

collection of dipole reflectors with an increasing time separation
(Figure 1b – Figure 1e). Figure 1b and 1c displays odd and even
wedge reflectivity models, respectively. Figure 1d and 1e shows
corresponding seismic responses after convolution with a given wa-
velet. Interference from the top and base of the wedge models,
which degrades the seismic resolution, becomes useful information
for BPI.
Because the sample rate is Δt, each trace of even wedge reflec-

tivity consists of a pair of equal impulse functions (spikes) with
interval nΔt. The reflector kernel matrix for the reflectivity pair
is constructed by shifting the reflectivity pair along the time axis

Seismic reflection inversion R149

D
ow

nl
oa

de
d 

01
/2

2/
13

 to
 7

5.
14

8.
21

2.
14

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



with mΔt, where m ranges from one to the number of samples
in the seismic trace. So each even wedge reflectivity can be
written as

reðt;m; n;ΔtÞ ¼ δðt − mΔtÞ þ δðt − mΔt þ nΔtÞ. (7)

The odd wedge reflectivity has the same pattern as even wedge with
the exception of polarized dipoles, written as

roðt;m; n;ΔtÞ ¼ δðt − mΔtÞ − δðt − mΔt þ nΔtÞ. (8)

Any reflectivity series can be considered a summation of even and
odd wedge reflectivity patterns, as shown in equation 9:

rðtÞ ¼
XN

n¼1

XM

m¼1

ðan;m � reðt;m; n;ΔtÞ þ bn;m

� roðt;m; n;ΔtÞÞ. (9)

When convolved with the wavelet, w, the left-hand side of
equation 9 becomes the seismic trace sðtÞ, and the right-hand side
of equation 9 becomes the summation of the even and odd wedge
seismic responses, as shown in equation 10:

sðtÞ ¼
XN

n¼1

XM

m¼1

ðan;m � wreðt;m; n;ΔtÞ

þ bn;m � wr0ðt;m; n;ΔtÞÞ;
(10)

where wre and wro are seismic responses of wedge reflectivity
pairs. Any seismic trace can be considered the summation of wedge
seismic dictionary elements. Assuming the seismic trace is properly
scaled to reflection coefficient magnitudes, the decomposition of
reflectivity into wedge reflector pairs and of the seismic trace into
wedge seismic responses shares exactly the same scalar coefficients
an;m and bn;m.
BPI can be used to calculate coefficients an;m and bn;m by solving

equation 10. As equation 9 and 10 share the same coefficients, the
inverted series can be calculated by summing up the wedge reflec-
tivity models with coefficients an;m and bn;m, as illustrated in
equation 9. Because the reflection coefficients and dipole reflector
pairs are defined with values ranging from −1 to þ1, the coeffi-
cients an;m and bn;m are of the same magnitude as the reflection coef-
ficients if the waveform amplitudes are properly scaled to reflection
coefficients. In practice, the actual scaling of the waveform ampli-
tudes is not a trivial process, and time and spatially varying scalars
are often required. We attempt to scale the data to synthetic seismo-
grams at well locations and balance the amplitudes between wells
by assuming that particular geological intervals have, on the aver-
age, constant or slowly varying reflection coefficients. If we are
confident in our amplitude scaling, we can further constrain the so-
lution based on petrophysically determined distributions of reflec-
tion coefficients. In this paper we did not apply scaling, beyond
normalizing the wavelet by its rms amplitude, nor did we apply pet-
rophysical constraints, to keep the comparison between our method
and sparse-spike inversion as simple as possible.
BPI implementation relies on the correct wavelet, which is usual-

ly derived from seismic data. Though several methods exist to es-
timate the seismic wavelet that yields reasonable results (e.g.,
Ulrych et al., 1995; Porsani and Ursin, 2000), the quality of the
derived wavelets is data dependent. A detailed, sensitive test of
the wavelet is shown in Zhang (2010). Generally, impedance inver-
sion results are no better than the estimate of the wavelet, and the
greater the resolution of the output, the more crucial it is to start with
a good estimate of the amplitude and phase spectrum of the wavelet.
This is true of all inversion methods; however, sparse inversion
methods, in particular, are highly sensitive to the low- and high-
frequency wavelet roll-offs (spectral slopes). If the roll-off is too
sharp, noise at those frequencies will be amplified. Conversely,
if the wavelet amplitude spectrum is too broad (as may be caused
by incomplete cancellation of the reflectivity spectrum in wavelet
extraction) the inverted reflectivity spectrum can exhibit spectral
notches at frequencies where energy is falsely attributed to the
wavelet. If the wavelet phase is wrong, this will impact not only
the phase of the inversion result but also affect the statistics of
the output reflectivity.

SYNTHETIC EXAMPLES

The regularization parameter λ in equation 4 balances the in-
verted reflectivity resolution and noise. Increasing λ decreases
the resolution of inverted reflectivity, and decreasing λ may cause
noise amplification. In practice, the proper λ value is data dependent
and determined empirically.

Figure 1. (a) Any arbitrary pair of reflection coefficients r1 and r2
can be represented as the sum of even and odd components. The
even pair has the same magnitude and sign, and the odd pair has
the same magnitude and opposite sign; (b) and (c) are odd and even
wedge reflectivity pairs; (d) and (e) show the BPI dictionary ele-
ments which are the wedge-model seismic responses using
30 Hz Ricker wavelet.
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Sparse-spike inversion (SSI) is an alternate minimal L1 norm
inversion method. Distinct from SSI, BPI utilizes the primal-dual
log-barrier algorithm (Chen et al., 2001), whereas SSI solves only
the primal equation (Taylor et al., 1979). Both BPI and SSI have a
trade-off factor λ to control the inversion output. However, the
values are not comparable between the methods. Both must be
determined independently by test trials. This makes comparison
of SSI and BPI results difficult, because the results are dependent
on the parameterizations. In this study a wide range of λs for each
inversion type is used; the correlation of inverted reflectivity with
true reflectivity is then determined for all λs for both inversion meth-
ods, and the best BPI result is compared to the best SSI result. The

correlation coefficient between true and inverted reflectivities quan-
titatively combines the accuracy in the location of and relative
magnitude of spikes.
To test and compare the methods, reflectivity series with ran-

domly selected amplitudes and time-thicknesses were generated
with a sample rate of 1 ms. Figures 2 and 3 show the SSI and
BPI inversion results for a particular case. The reflection coefficient
at each sample is a random value between −0.2 and 0.2 (shown in
Figure 2b). Figure 2a shows the synthetic seismogram, which is the
convolution of the reflectivity with a 40 Hz Ricker wavelet.
Gaussian noise, giving a signal-to-noise ratio (S/N) of 10, which
is generated by randomly drawing numbers from a Gaussian

Figure 3. 1D synthetic tests of BPI are applied on (a) Synthetic seis-
mogram with 40 Hz Ricker wavelet and 10% random noise. (b) True
reflectivity. (c)-(n) Shows BPI inversion results with varying λBPI va-
lues of (c) λBPI ¼ 10−2, (d) λBPI ¼ 10−1, (e) λBPI ¼ 2, (f) λBPI ¼ 3,
(g) λBPI ¼ 500, (h) λBPI ¼ 600, (i) λBPI ¼ 2.1, (j) λBPI ¼ 2.2, (k)
λBPI ¼ 2.3, (l) λBPI ¼ 2.4, (m) λBPI ¼ 2.5, and (n) λBPI ¼ 2.6.

Figure 2. 1D synthetic tests of SSI are applied on (a) synthetic seis-
mogram with 40 Hz Ricker wavelet and 10% random noise. (b) Shows
the true reflectivity. (c)-(n) Shows SSI inversion results with varying
λSSI values of (c) λSSI ¼ 10−6, (d) λSSI ¼ 10−5, (e) λSSI ¼ 10−4, (f)
λSSI ¼ 10−3, (g) λSSI ¼ 10−2, (h) λSSI ¼ 10−1, (i) λSSI ¼ 2 × 10−4,
(j) λSSI ¼ 3 × 10−4, (k) λSSI ¼ 4 × 10−4, (l) λSSI ¼ 5 × 10−4, (m)
λSSI ¼ 6 × 10−4; (n) λSSI ¼ 7 × 10−4.
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Figure 4. (a) λ-correlation curve for SSI based on
the synthetic data in Figure 2. The correlation
coefficient is calculated between SSI results and
true reflectivity and is plotted against the regular-
ization factor λSSI; (b) the λ-correlation curve of
BPI based on the same synthetic data in Figure 2.
The correlation that is calculated between BPI
results and true reflectivity is plotted with the reg-
ularization factor λBPI; (c) and (d) show coarse
λ-correlation curves of BPI and SSI based on
the same synthetic data in Figure 2 for (c)
noise-free and (d) 40% noise.

Figure 5. A crossplot of maximum correlation from BPI and SSI results calcu-
lated on 100 different randomly generated synthetic reflectivities. The dashed line
represents equal correlation for both methods. BPI usually correlates better with
the true reflectivity.

Figure 6. Predominantly even and odd wedge models. (a) A predominantly even wedge-model and its tuning curve with seismic responses
overlaid. (b) A predominantly odd wedge-model and its tuning curve with seismic responses overlaid. Seismic responses are generated with a
40-Hz Ricker wavelet convolved with the wedge reflectivity. Tuning thickness is 10 ms.
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Figure 7. Predominantly wedge inversion without
noise. (a)-(d) Shows tests results for a predomi-
nantly even wedge-model. (a) BPI inverted results
with λBPI ¼ 10−2. (b) SSI inverted results with
λSSI ¼ 10−7. (c) Residuals from BPI inverted re-
sults. (d) Residuals from SSI inverted results.
(e)-(h) Shows tests results for predominantly
odd wedge-model. (e) BPI inverted results with
λBPI ¼ 10−2. (f) SSI inverted results with
λSSI ¼ 10−7. (g) Residuals from BPI inverted re-
sults. (h) Residuals from SSI inverted results.

Figure 8. Predominantly wedge inversion with
10% noise. Letters (a) through (d) show tests re-
sults for a predominantly even wedge-model with
10% noise. (a) BPI inverted results with λBPI ¼ 2.
(b) SSI inverted results with λSSI ¼ 10−3.
(c) Residual from BPI inverted results. (d) Resi-
dual from SSI inverted results. Letters (e) through
(h) show tests results for a predominantly odd
wedge-model with 10% noise. (e) BPI inverted re-
sults with λBPI ¼ 2. (f) SSI inverted results with
λSSI ¼ 10−3. (g) Residual from BPI inverted re-
sults. (h) Residual from SSI inverted results.
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distribution with the L2 norm that is 10% that of the L2 norm of the
noise-free synthetic seismogram, is added to the noise-free synthetic
seismogram. Small λSSI values boost the noise on the inverted re-
flectivities (Figure 2c and 2d) and large λSSI values produce inverted
reflectivities that are too sparse (Figure 2g and 2h). Extreme values
of λSSI result in a discrepancy between the inverted and true reflec-
tivity. For this synthetic example, the best inversion results are for
regularization parameters between 10−4 and 10−3. Further tests are
performed with λSSI between 10−4 and 10−3 (Figure 2i–2n).
Figure 3 shows the BPI inverted reflectivities based on the same

synthetic data in Figure 2a and 2b. Similar to SSI, a small λBPI
causes noise to amplify (Figure 3c and 3d), and a large λBPI pro-
duces sparse results (Figure 3g and Figure 3h). The maximum cor-
relation is between two and three (Figure 3i–3n).
Zero-lag correlations between the inverted and true reflectivities

from previous tests have been plotted in Figure 4. Figure 4a shows
that the maximum correlation for SSI tests is around 0.8 with λSSI

around 2 × 10−4. Figure 4b shows that the maximum correlation for
BPI tests reaches about 0.9 at λBPI around 2.2.
In addition to the 10% noise level, synthetic tests were conducted

for BPI and SSI on the same reflectivity series but with 0% and 40%
noise levels (see Figure 4c and 4d). As expected, noise reduces the
correlation coefficient for both cases, but BPI is degraded by a smal-
ler percentage than SSI for this case.
The same methodology was applied using 100 different random

reflectivity series and corresponding synthetic seismograms with a
40 Hz Ricker wavelet. For these synthetic cases, the noise level var-
ied from 10% to 50% in increments of 10% with 20 traces at each
noise level. In most cases, BPI correlates better to the true reflec-
tivity model (Figure 5).
Resolution of the methods can be compared using wedge models.

Wedge models may be primarily even or primarily odd (Figure 6).
The tuning thickness tR of a thin-bed model with a Ricker wavelet is
given by Chung and Lawton (1995):

tR ¼
ffiffiffi
6

p

2πf 0
; (11)

where f 0 is the dominant wavelet frequency. For a 40-Hz Ricker
wavelet, tR ¼ 10 ms.
Figure 7a to 7d shows the best noise-free inversion results for the

predominately even wedge-model for both BPI and SSI. For noise-
free data, BPI has smaller residuals, especially for thin beds. Notice
that the residuals are small compared to the data. Figure 7e–7h
shows the best BPI and SSI results for the predominantly odd
wedge-model. For thin beds, the residual is of the same order of
magnitude as the data. Overall, for noise-free data, BPI has a better
resolution and smaller residual than SSI.
Figure 8a–8d shows the BPI and SSI inversion results of a pre-

dominantly even wedge-model with a S/N of 10. The resolution of
the two methods is comparable, with BPI being slightly better. The
residuals are of the same order of magnitude as the data. BPI has
better residuals than SSI. Figure 8e–8h shows the BPI and SSI in-
version results of the predominantly odd wedge-model with an S/N
of 10. Resolution and residuals are slightly better for BPI than
for SSI.
This series of synthetic tests suggests that sparse-layer BPI,

using a wedge-model dictionary, is at least as good as SSI to invert
for blocky earth models containing thin layers and usually better in

regards to resolution and fit to the data, when
optimal regularization parameters are chosen.
It remains to be seen, in practice, if this benefit
can be realized, because the optimal regulariza-
tion parameter may not be known. Nevertheless,
the results are encouraging and suggest that
even greater improvement could be obtained
by further constraining the inversion using actual
well-log reflectivity patterns; this is left as an
objective of future research.

REAL DATA RESULTS

The BPI inversion with a wedge-model is
tested on a 3D seismic data set in a clastic
basin. Figure 9 shows the synthetic tie between
the input seismic data and the well-log data.
The extracted wavelet used for the synthetic

Figure 9. Seismic well tie, including gamma ray, resistivity, and
computed impedance, along with the synthetic seismogram (blue),
composite seismic trace at the well location (red), and original seis-
mic traces near the well. The correlation coefficient between the
synthetic and the composite trace is 0.79. Shale is indicated by high-
er gamma ray values.

Figure 10. (a) Extracted seismic wavelet at well location using amplitude spectrum of
seismic data averaged over 1000 ms and a spatial window consisting of 100 inlines and
crosslines in the vicinity of the well, and application of constant phase rotations that
produce the best synthetic tie. (b) Amplitude and phase spectrum of the wavelet.
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(Figure 10) is calculated from an inversion in which the wavelet is
the unknown to be determined from the known well-log reflectivity
and seismic traces at the well-log location. The peak frequency of
the extracted wavelet in this case is close to 25 Hz (Widess, 1973,
1985), yielding a one-half-period time-thickness resolution of about
20 ms. The phase of the wavelet is about 140°.
The seismic well tie (Figure 9) shows a good fit (r ¼ 0.79) be-

tween the unedited reflectivity convolved with the extracted wavelet
and the seismic trace. However, because seismic data are much low-
er in frequency than log data, the fit is useful only as an approx-
imation for aligning gross lithologic packages.
In the examples presented, both BPI and SSI were run using λ

values that resulted in the best correlation to the well-log. BPI re-
flectivity inverted from the original seismic data is converted to
band-limited impedance by the standard method of integration fol-
lowed by low-cut filtering to avoid the systematic accumulation of
errors (Figure 11).
As is evident in Figure 11, in the original seismic data it is almost

impossible to detect or resolve thin layers, because some are appar-
ent on the inverted impedance section. One of these thin layers is
highlighted in Figure 11, in which a shale, embedded in thick sand,
is indicated on the gamma ray log. This shale could be an important
vertical flow barrier. Although it is not mappable on the original
seismic data, it appears to have been detected after BPI inversion
for band-limited impedance. The shale thickness, which is about
3 ms, is well below the tuning thickness (the peak frequency of
the data is 25 Hz, yielding a one-quarter wavelength resolution
of about 20 ms). The band-limited impedance from BPI appears
to detect and resolve some, but not all, thin layers seen in the logs.
Such detection could be fortuitous; however, the odds of detecting
more than one thin anomalous layer on the inverted seismic at the
same record times that the layers occur in the well logs is low en-
ough that such a correlation cannot be discounted. In application,

Figure 11. Inverted band-limited seismic impedance section (col-
ors), inserted well-log band-limited impedance (central color bar)
and original seismic wiggles. Red indicates high impedance and
blue indicates low impedance. Solid arrows indicate the expression
of thin low impedance shales seen in the well logs on the inverted
impedance section. Not all thin layers evident on the well logs are
resolved by the inversion. The dashed arrow indicates a relatively
high impedance layer seen in the well-log but not in the seismic
inversion at the well location, suggesting multiple solutions with
similar seismic responses. Thin layers evident in the well-log are
sometimes but not always apparent on the seismic inversion, sug-
gesting data and case dependent resolution. None of the layers is
resolved on the original seismic data.

Figure 12. Zoom of well logs and seismic data in the vicinity of a
thin shale highlighted by four solid arrows in Figure 11 at about
1130 ms. (a) Well logs. (b) Inverted band-limited seismic impe-
dance using BPI and λBPI ¼ 2. (c) Original seismic data. The red
boxes show the interpreted location of the shale on the well logs
and on the seismic data. The location of the well on the seismic
data is indicated by the black box.

Figure 13. (a) BPI inverted band-limited impedance suggests many
thin layers within the rectangle. (b) SSI inverted data shows a low to
high impedance transition within the rectangle. The original seismic
image data-overlain as wiggles shows one layer of positive contin-
uous amplitudes that can picked as horizon. Red indicates high
band-limited impedance and blue indicates low band-limited
impedance.
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more wells would be needed for validation before one could be con-
fident that a particular layer was being detected and resolved. This
example suggests that sparse-layer inversion provides a different
and possibly significantly better representation of the layering
observed in the log data than the original seismic image.

In practice, such an apparent increase in resolution could be due
to the simple magnification of noise resulting from the selection of a
regularization parameter that is too small, and comparison of the
results to existing well logs and stratigraphic interpretations is
needed to validate the resolution of the output. A regularization
parameter λBPI of two was used to generate the result shown in
Figures 11 and 12. If sufficient well control is available, one can
optimize the regularization parameter to give inversion results that
best match all well information. Unfortunately, no other wells were
available in this case. In this example, as would often be the case in
practice, parameterization is a judgment call that can greatly impact
the validity of the results.
Figures 13 and 14 compare BPI and SSI inverted band-limited

impedances with the original seismic wiggles overlain for many re-
presentative sections from a deeper interval in the 3D data set. The
calibrated wavelet has a peak frequency of about 10 Hz and a 150°
phase with the tuning time-thickness for this data being 50 ms. BPI
clearly produces laterally consistent thin layers that are not revealed
on the original seismic data or by SSI (Figure 13).
In Figure 14, although the BPI inverted band-limited impedance

image is much higher in frequency than the seismic data or the SSI
result, it exhibits more lateral coherence than the low frequency
images, while also revealing a thinning wedge that is not apparent
on the other images. The lateral coherency of the output of the BPI
inversion process, which is a trace independent process with no lat-
eral continuity constraints, spatial filtering, or starting model to im-
pose false lateral continuity, is an important attribute that cannot be
ignored. This observation was also made by Puryear and Castagna
(2008) for spectral inversion results. They hypothesized that such a
lateral consistency of the inversion result is caused by the reduction
of wavelet side-lobe interference effects by the inversion process. A
3D minicube from the same data set (Figure 15) shows good lateral
continuity of BPI inverted reflection coefficients and band-limited
impedance.

DISCUSSIONS

The increased frequency content of the output
of the sparse-layer inversion relative to the
original seismic data is a consequence of the
assumptions built into the process: (1) each re-
flection event is produced by the superposition
of a limited number of layer responses, (2) the
impedance structure of the earth is blocky, rather
than transitional, and (3) there is a predefined
range of layer thicknesses. To the extent that
these assumptions are correct, a significant valid
bandwidth extension can be achieved. If these as-
sumptions are not a good representation of the
earth structure, the inversion output will be
incorrect.
In this study, a constant wavelet is utilized for

simplicity. In practice, a set of time and spatial
varying wavelets could improve the method.
Such a set of wavelets can be easily implemented
by modifying the wavelet kernel matrix, but it is
difficult to get a reliable time and spatial varying
trends. In this case, attenuation, dispersion, and
many other wave propagation effects have to be
considered.

Figure 14. (a) BPI result reveals couples of laterally continuous
dipping layering (white arrow) characteristic of undisturbed
layer-cake geology. (b) SSI result shows a much simpler impedance
layering structure. The black ellipse in (a) emphasizes a wedge
structure inverted by BPI that is unclear in the seismic wiggles
or the SSI.

Figure 15. (a) Original 3D data set cube; (b) BPI inverted reflection coefficients cube;
(c) BPI inverted band-limited impedance.
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In our formulation for BPI inversion, we assume horizontal iso-
tropic homogenous layers, a known wavelet, and that the convolu-
tional model is applicable. These assumptions are clearly wrong;
yet, such assumptions have underlain many processing and inver-
sion methods that have been used successfully in commercial ap-
plications. Part of the utility of these assumptions is related to the
fact that seismic data is interpreted largely in a relative sense, and
when absolute numbers are produced much calibration and correc-
tion is applied to the output. As we push resolution beyond that of
the original seismic data we expect such assumptions to become
even more important. It remains to be seen how successful BPI in-
version will be in predicting absolute rock properties. It is probably
safer at this point to view the output of BPI inversion simply as
another seismic attribute that can be used for visualization purposes
and for multiattribute analysis.
For data with a high S/N and significant asymmetry in the local

impedance structure (leading to an appreciable even component of
the reflectivity), thicknesses far below tuning can potentially be re-
solved given sufficient S/N. Noise in the data deteriorates the per-
formance of the inversion. Predominantly odd reflectivity is less
readily resolved than reflectivity with a large even component.
Sparse-layer inversion using basis pursuit of a wedge dictionary

does not use well-log information in the inversion as a starting mod-
el or as a constraint. Therefore, the resulting inversion is unbiased
by preconceived ideas, other than those of the general assumptions
stated above.
Basis pursuit inversion can be readily extended to the prestack

AVO domain. One approach would be to invert for reflection coef-
ficients on angle stacks. Alternatively, one could formulate the in-
version using linearized Zoeppritz approximations (e.g., Aki and
Richards, 1980), and invert the angle gather simultaneously for a
spiky series of ΔVP∕VP, ΔVS∕VS, and Δρ∕ρ (or similar) AVO at-
tributes. One would have to take special care in accounting for the
offset dependence of the seismic wavelet. Other difficulties to con-
sider would be the lower S/N of the prestack data relative to the
stack and the greater impact of moveout error at higher frequencies.
The study of prestack BPI is left as an objective of future research.
Although we have not optimized the inversion code, the method

is obviously computationally more intensive than sparse-spike in-
version, because, rather than inverting for the coefficients of the
seismic wavelet, an entire dictionary of dipole responses must be
considered in lieu of a single wavelet. However, the problem is
small enough that we have been able to implement all the work
presented here on a desktop PC. Furthermore, being a trace-by-trace
process, the method is readily parallelizable and is well suited to
implementation on a cluster.

CONCLUSIONS

Sparse-layer inversion can be accomplished by basis pursuit of a
dictionary of functions, representing thin-bed reflectivity patterns,
and the constitution of the seismic trace as a superposition of these
patterns. This method determines a sparse number of patterns
summed together to form the seismic trace. Synthetic tests indicate
that sparse-layer inversion, using basis pursuit (BPI), can better re-
solve thin beds than a comparable sparse-spike inversion (SSI) and
usually correlates better to known reflectivity when optimal regu-
larization parameters are used for both methods.
We conclude that the sparse-layer inversion of seismic reflection

data using basis pursuit with a wedge-model dictionary is a viable

inversion method. The results are comparable to and, arguably,
more accurate and more highly resolved than sparse-spike inver-
sion. Most significantly, the inversion results produce different
images that lead to different geological interpretations of reflection
events than conventional data or sparse-spike inversion.
The application of sparse-layer inversion to field data suggests

but does not prove improved detectability, resolution, and lateral
continuity of thin layers. In one instance highlighted here, a
3 ms thick shale not visible on the original seismic data was de-
tected and resolved. In practice, one needs to determine whether
such apparent resolution is real or a consequence of using too small
a regularization parameter; the best proof would be obtained by
comparing the inversion results to multiple well logs, where there
is a significant lateral variation in thickness of the layer. Commonly,
as was the case here, only limited well information is available, and
confidence must be built based on how well the image conforms to
geological expectations. Comparison of inversion images to seismic
and conventional sparse-spike sections shows alternative definition
of what appear to be stratigraphic features. Lateral continuity of BPI
inversion images can be greater than the continuity of the original
seismic data, suggesting that wavelet side-lobe interference that
produces apparent discontinuities is reduced by the inversion pro-
cess. As evidenced by synthetic and real data results, BPI can po-
tentially be a practical tool for seismic exploration and reservoir
characterization purposes.
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