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ABSTRACT

Various postprocessing methods can be applied to seismic data
to extend the spectral bandwidth and potentially increase the
seismic resolution. Frequency invention techniques, including
phase acceleration and loop reconvolution, produce spectrally
broadened seismic sections but arbitrarily create high frequencies
without a physical basis. Tests in extending the bandwidth of low-
frequency synthetics using these methods indicate that the in-
vented frequencies do not tie high-frequency synthetics generated
from the same reflectivity series. Furthermore, synthetic wedge
models indicate that the invented high-frequency seismic traces
do not improve thin-layer resolution. Frequency invention out-
puts may serve as useful attributes, but they should not be used
for quantitative work and do not improve actual resolution. On
the other hand, under appropriate circumstances, layer frequency
responses can be extrapolated to frequencies outside the band of

the original data using spectral periodicities determined from
within the original seismic bandwidth. This can be accomplished
by harmonic extrapolation. For blocky earth structures, synthetic
tests show that such spectral extrapolation can readily double the
bandwidth, even in the presence of noise. Wedge models illustrate
the resulting resolution improvement. Synthetic tests suggest that
the more complicated the earth structure, the less valid the band-
width extension that harmonic extrapolation can achieve. Tests of
the frequency invention methods and harmonic extrapolation on
field seismic data demonstrate that (1) the frequency invention
methods modify the original seismic band such that the original
data cannot be recovered by simple band-pass filtering, whereas
harmonic extrapolation can be filtered back to the original band
with good fidelity and (2) harmonic extrapolation exhibits accept-
able ties between real and synthetic seismic data outside the origi-
nal seismic band, whereas frequency invention methods have
unfavorable well ties in the cases studied.

INTRODUCTION

Resolution of seismic data is a function of data bandwidth and
dominant frequency (Widess, 1973; Kallweit and Wood, 1982). Due
to the attenuation of high frequencies during wave propagation in an
attenuating earth, seismic frequency content may not be adequate for
seismic interpretation purposes in specific cases. A seismically thin
layer is commonly defined to be a layer thinner than approximately
one-fourth wavelength of the dominant frequency of the data. For
such layers, the reflection events of opposite sign from the top and
base of the layer cannot be independently mapped, and the time dif-
ference between them is generally not sensitive to the actual thickness
of a thin layer (Widess, 1973). In practice, because many reservoirs or

flow units within reservoirs are seismically thin, seismic resolution
improvement is often desirable. The best way to accomplish this
is to design better data acquisition and to process the data in such a
way as to maximize resolution; however, the desired resolution may
not be achievable given practical constraints. Given an existing data
set of a given resolution, any postprocessing steps that can be applied
to improve resolution are, if valid, desirable.
Resolution improves as the signal dominant frequency is increased

and as its bandwidth is widened. However, one can conceive of many
ways of data manipulation transforming seismic data to higher fre-
quencies that do not actually improve seismic resolution (e.g., Young
and Wild, 2005; Stark, 2009). We refer to such methods that arbitrar-
ily create amplitude at frequencies outside the band of the original
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data as frequency invention techniques because they are not based on
the physics of seismic wave propagation. Chávez-Pérez (2015) dis-
cusses the fact that these methods are indeed used in the industry and
uses canonical examples to show their lack of efficacy.
That bandwidth extension is possible under appropriate circum-

stances should not be a matter of debate: The only question should
be the general applicability of a given method. Spectral extrapola-
tion is recognized in telecommunications as a viable means of
recovering high-frequency speech components that are not transmit-
ted (see, e.g., Avendano et al., 1995; Pyke, 1997). In the case of
seismic data, there is a strong link between the amplitudes of vari-
ous frequency components of the reflectivity spectrum for individ-
ual layers out to the Nyquist frequency (see, e.g., Partyka et al.,
1999; Marfurt and Kirlin, 2001). Consequently, missing frequencies
in the data spectrum can potentially be extrapolated by applying
predictive operators directly in the frequency domain. Oldenburg
et al. (1983) state “the Fourier transform of a reflectivity function
for a layered earth can be modeled as an autoregressive (AR) proc-
ess. The missing high and low frequencies can thus be predicted
from the band‐limited reflectivity function by standard techniques.”
Walker and Ulrych (1983) deal with novel extensions to the AR
algorithm and demonstrate the efficacy of the method for sparse
reflectivity series. In this tutorial, we discuss the use of sparse seis-
mic inversion to achieve the bandwidth extension.
In the special case in which the earth model contributing to a

given seismic reflector is caused by a single layer, Puryear and Cas-
tagna (2008) show that, with a known wavelet and in the absence of
noise, the reflectivity spectrum associated with that layer, which is
periodic in frequency, can be determined. Thus, the frequency re-
sponse of that layer reflectivity can be extrapolated outside of the
original band. Other simple layer models can also be readily
extrapolated if there is enough bandwidth in the recorded signal to
properly characterize the layering. Puryear and Castagna (2008) and
Zhang and Castagna (2011) show how sparse inversions can be
used to produce bandwidth-extended seismic sections, even when
layers are not isolated, by solving for many superposing layer re-
sponses simultaneously. Hargreaves et al. (2013) explain that all
sparse inversion methods can extend the seismic bandwidth to some
extent. Zhang and Castagna (2011) show that sparse layer inversion
can resolve thin layers better than sparse spike inversion (Taylor
et al., 1979; Oldenburg et al., 1983) and should be more effective
for spectral extension. Spectra can also be extended, with some re-
ported success, directly by extrapolating time-frequency analyses
produced by spectral decomposition (Smith et al., 2008). That band-
width extension can be achieved should not be surprising; what may
be unexpected is how useful such extrapolated frequencies can be.
Bandwidth extension does not increase the information content of
the data beyond the original information of the data plus any infor-
mation resulting from the assumptions made to accomplish that
extrapolation (such as assuming a blocky earth model). Bandwidth
extension should thus be considered, not a means of recovering lost
signal, but as a means of transforming the data to have useful char-
acteristics — such as possibly improved resolution.
When confined to digital filtering (without invoking sparsity con-

straints), once a given frequency has been filtered away, no linear
digital filter can restore it. Thus, where earth filtering has attenuated
away high-frequency information, those frequencies can never be
recovered. Deconvolution, for example, will just blow up noise at
such missing frequencies. This inverse digital filtering paradigm

somehow leads to the misconception that prediction of those miss-
ing frequencies cannot be validly performed using any method.
However, since the inception of sparse inversion methods, it has
been well-known that inverted earth models contain frequencies not
present in the original data (e.g., van Riel and Berkhout, 1985). In
seismic inversion, it is well-established that a priori information and
constraints can restore missing frequencies (Tarantola, 2005). The
issue then becomes how adequate, how correct, and how useful the
constraints are in the presence of noise.
A more damaging contribution to the confusion associated with

bandwidth extension is the practice of frequency invention. Because
frequencies outside the band of the seismic data are filtered away by
the seismic wavelet, any frequency content can be added to this null
space and still be compatible with the original seismic trace. Various
schemes can be imagined that create high-frequency data that track
seismic reflectors. The result is a high-frequency section that may
look geologic, but in which the high frequencies amount to no more
than fictitious coherent noise. We will describe two representative
frequency invention methods that are common practice, including
cosmetic loop reconvolution (Young and Wild, 2005) and phase
acceleration (Mallat, 2009; Stark, 2009). These methods invent
frequencies outside the band of the data without a physical basis.
We will show using synthetic wedge models that such methods do
not improve resolution. As pointed out by Wild and Young (2005),
high-frequency seismic sections produced by frequency invention
may serve as a useful seismic attribute for certain interpretational
purposes, but we will show in this tutorial that such outputs should
not be wrongly attributed with the properties of those produced by
true bandwidth extension techniques.
The purpose of this tutorial paper is to help reduce the confusion

relating to these issues to avoid improper use or avoidance of band-
width extension techniques. We illustrate extension of the data
bandwidth using frequency periodic layer responses; we refer to this
as harmonic extrapolation and show that it can improve seismic res-
olution under certain conditions. The broadband reflectivity series
for a blocky earth model can be obtained using a variety of ap-
proaches (Taylor et al., 1979; Puryear and Castagna, 2008; Zhang
and Castagna, 2011) other than the algorithm we will describe here.
We do not claim that our harmonic extrapolation method is the op-
timal means of inverting for the layer model, only that it is a rep-
resentative way of accomplishing the bandwidth extension. We will
demonstrate the applicability of harmonic extrapolation with a
series of comparative studies using synthetic data, which is the only
circumstance in which the “correct answer” is perfectly known. We
start with low-frequency synthetic data, use various bandwidth ex-
tension methods, and compare to perfect high-frequency synthetics.
Resolution improvement, or lack thereof, will be demonstrated on
synthetic wedge models. These synthetic tests will address the theo-
retical validity of the methods in a perfect world; real-world appli-
cation in the presence of imperfect data is, of course, another matter.
We will test the efficacy of the methods on synthetics with added
noise and on real data. We will show (1) that frequency invention
does not increase seismic resolution and (2) that under the right cir-
cumstances, valid spectral broadening can be achieved to some ex-
tent using harmonic extrapolation.

THEORY AND METHODS

We assume that the processed seismic data can be represented by
the simple convolutional model, where the seismogram sðtÞ is the
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convolution of a constant seismic wavelet wðtÞ, with a reflectivity
series rðtÞ plus random noise nðtÞ:

sðtÞ ¼ wðtÞ � rðtÞ þ nðtÞ: (1)

This model implicitly assumes that the subsurface geology to be
horizontally layered with constant rock properties within the layers,
whereas the reflections are generated at the seismic impedance con-
trast boundaries between those adjacent layers and ignores many
wave-propagation effects. These are assumed to be corrected in
processing. The convolutional model will be used to generate syn-
thetic traces and to invert seismic traces into band-limited reflectiv-
ity. Any real-world deviations from this model are implicitly
contained in the noise term.

Frequency invention methods

Some of the inspiration for seismic bandwidth broadening meth-
ods stems from basic Fourier theorems (Bracewell, 1965) and
related variants commonly seen in the field of electrical engineer-
ing. For example, the Fourier shift theorem shows that a given sig-
nal can be converted to a higher frequency signal by multiplying the
signal with high-frequency sinusoids. The resulting higher frequen-
cies can be added back to the original signal to produce a broader
band waveform. Whether any apparently broader spectral band
being created in this way, irrespective of the underlying physics, is
theoretically valid in accordance with the convolutional model
should be questioned.
One such typical method called phase acceleration produces high

frequencies using instantaneous frequency (Stark, 2009). Analytical
instantaneous frequency is a useful attribute related to rock and fluid
properties as well as a measure for evaluating
layer thickness (Barnes, 2007). In audio process-
ing, it is a common practice to transpose the
signal frequency by scaling the phase to shift the
harmonics and modify the sound properties
(Mallat, 2009). The phase acceleration technique
uses the instantaneous frequency of the original
data as a fundamental frequency and increases
the seismic frequency by increasing the rate of
change of the instantaneous phase.
Based on complex trace analysis, the narrow-

band seismic signal can be viewed as the real
component of a complex number representation
(called the analytic trace), which provides a defini-
tive separation for amplitude of the trace envelope
and local phase content (Taner et al., 1979).
This representation permits explicit calculation
and modification of the instantaneous frequency,
which is the first derivative of the instantaneous
phase in the time domain. The analytical signal
SðtÞ, of which the seismogram sðtÞ, is the real part
is given by

SðtÞ ¼ sðtÞ þ is⊥ðtÞ ¼ AðtÞeiφðtÞ; (2)

where φðtÞ is the instantaneous phase, AðtÞ is the
instantaneous amplitude, and s⊥ðtÞ is the quadra-
ture series (Hilbert transform) of the real seismic
trace. Barnes (2007) shows that instantaneous

frequency at the peak of the envelope is the dominant frequency of
the data. Consequently, the instantaneous frequency and the domi-
nant frequency of the original trace can be directly changed by multi-
plying the phase term by any desired amount. The frequency
extrapolated trace sEðtÞ can then be calculated using

sEðtÞ ¼ AðtÞ
Xk
i¼1

cos miφðtÞ; (3)

wheremi can be varied to sum an arbitrary number of invented bands
to the original data. For instance, a 2 ms sampling seismic tracewith a
central frequency of 30 Hz can be broadened to a wider bandwidth
with the factorsmi (k ¼ 7) taking the integers 0, 1, 2, 3, 4, 5, 6, 7, of
which m1 ¼ 1 denotes the original trace. In the case of an invariant
instantaneous phase, the summation will produce beating sinusoids.
Because the beating sinusoids have their own envelope, with maxima
spacing determined by the beat frequency, the resulting extrapolated
trace may result in events with modified envelope. In the case of ap-
plication to real data, the duration of events may thus be shorter and
appear to have better resolution. Figure 1a–1h shows the application
of phase acceleration to a 30 Hz Ricker wavelet. The phase is accel-
erated by factors of two and three yielding higher frequency wavelets
(Figure 1b and 1c). Notice that these wavelets have a higher center
frequency, but they have the same envelope (dashed lines) and band-
width as the original waveform (Figure 1e–1g). These are summed in
equation 3 with the original signal to produce a waveform with a
broad frequency response, high center frequency, and short envelope
width (Figure 1d and 1h).
In the loop reconvolution method (Young and Wild, 2005), a

spike representation of the seismic data is created first, and then

Figure 1. Phase acceleration on an isolated wavelet (30 Hz Ricker) with envelopes (dashed
lines) overlaid. (a) Original wavelet, (b) phase accelerated wavelet with factor of two,
(c) phase accelerated wavelet with factor of three, (d) high-frequency wavelet by summa-
tion of phase accelerated results, (e) spectrum of the original wavelet; (f) spectrum of the
phase accelerated result with factor of two, (g) spectrum of the phase accelerated result with
factor of three, and (h) spectrum of the resulting bandwidth-extended wavelet.
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the resulting broadband spike series is convolved with a high-fre-
quency wavelet (Figure 2a–2c). Young andWild (2005) oversample
the input data to avoid aliasing and zero out all samples of the seis-
mic trace other than samples representing the original peaks and
troughs. This produces a “spike train”; unfortunately, this is some-
times referred to by practitioners as a sparse reflectivity, which in-
correctly implies that the spikes represent reflection coefficients. In
no case, even with only isolated reflectors, is this spike train rep-
resentative of the true reflectivity because all wavelet side lobes also
appear as spikes, which are always located at waveform peaks and
troughs (referred to as the “loops” of the waveform). The “high-fre-
quency” seismic trace is achieved by convolving the spike series with
an arbitrary high-frequency wavelet of choice. This method produces
output that is correlated with the original peaks and troughs, which
can lead to a misleadingly high correlation to synthetic data, if the
original well tie is also good. This may occur for isolated or major
events, for which peaks and troughs of the high-frequency synthetic
remain aligned with the loop reconvolution result if the low-fre-
quency synthetic and input seismic data originally had aligned peaks
and troughs.
These frequency invention methods are fast and relatively easy to

implement. They may have utility as seismic attributes — for ex-
ample, faults with throw less than one-half the period of the original
data may visually become clearer because peaks may then be juxta-
posed against troughs on the higher frequency outputs (Young and
Wild, 2005). A purpose of this tutorial is to show that, although
producing potentially useful attributes, the value of frequency in-
vention to increase resolution or for quantitative analysis is highly
questionable at best.

Harmonic extrapolation method

Bandwidth extension can be achieved by extrapolation of the
spectrum outside the original sampled seismic bandwidth. We rely
on the fact that any transient signal has an infinite frequency re-
sponse that is potentially predictable to some extent if a sufficient
portion of the spectrum is sampled. Our ability to do this of course

depends on how simple and characterizable that spectrum is, how
clear the frequency periodicities are, the original bandwidth of the
data, and the noise level.
To the extent that the convolutional model adequately simulates

seismic wave propagation and data processing, we can view seismic
data as a band-limited version of the reflection coefficient time
series; the reflectivity spectrum within the data band is shaped by
the wavelet spectrum, whereas the frequencies outside the band of
the wavelet are zeroed out, causing the ambiguity in resolving seis-
mic reflections. A blocky earth structure provides a physical basis
for a valid bandwidth extension as the reflectivity spectrum is a
superposition of sinusoidal layer frequency responses (Puryear and
Castagna, 2008).
As illustrated by Partyka et al. (1999), and quantitatively studied

by Marfurt and Kirlin (2001), any layer with a single reflection
coefficient at the top and base can be represented as an impulse pair
reflectivity series. As discussed below, one can model different types
of layers using weighted sums of the even and odd impulse pair sym-
bols (Bracewell, 1965) defined by

IIðtÞ ¼ δ
�
tþ 1

2

�
þ δ

�
t −

1

2

�
(4)

and

IIðtÞ ¼ δ
�
tþ 1

2

�
− δ

�
t −

1

2

�
; (5)

where δðtÞ is the Dirac delta function referred to as a unit impulse at
time zero in the context of signal processing. A layer with time thick-
ness Δt and reflection coefficients r of equal magnitude and sign
at the top and base, can be represented by an even impulse pair
rIIðt∕ΔtÞ, with the reflectivity spectrum given by a real function:

IIðfÞ ¼ 2r cosðπΔtfÞ; (6)

which is periodic in frequency. For odd impulse pairs, the spectrum is
an imaginary sine function:

Figure 2. Loop reconvolution method. (a) Low-frequency (30 Hz)
seismogram, (b) spike train produced by locating peaks and troughs,
and (c) spectral recovery by high-frequency (60 Hz) wavelet convo-
lution.

Figure 3. Reflectivity amplitude spectrum for a simple layer of
50 ms thickness, with equal and opposite reflection coefficients of
unit amplitude at the top and base. Two frequency cycles are apparent
within a hypothetical seismic bandwidth (dashed lines). Assuming
the wavelet is known, a band-limited reflectivity spectrum is obtained
by dividing the data spectrum by the wavelet spectrum (solid circles),
and a best-fit sinusoid (solid line) is readily fit to these observed am-
plitudes. It is then a simple matter to extrapolate the layer reflectivity
spectrum outside the original seismic band by extending the sinusoid.
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IIðfÞ ¼ i2r sinð πΔtfÞ: (7)

Figure 3 shows the reflectivity amplitude spectrum of a 50 ms
thick layer consisting of two reflection coefficients with equal unit
magnitude, but with opposite sign. The hypothetical seismic band-
width, bandlimited by the seismic wavelet, is denoted by dotted
lines. In practice, because the convolution of the reflectivity with
the seismic wavelet in the time domain is equivalent to multiplica-
tion with the wavelet spectrum in the frequency domain, the reflec-
tivity spectrum is obtained over the band of the data by dividing the
seismic data spectrum by the wavelet spectrum, which is assumed to
be known in this discussion and must be well-determined a priori in
practice. The amplitudes of the Fourier frequencies of the reflectiv-
ity spectrum obtained over the seismic band in this way are indi-
cated by solid circles in Figure 3. In the case of a single layer, these
amplitudes would readily reveal the sinusoidal shape of the reflec-
tivity spectrum and could thus be fit with a best least mean-square-
error (LMSE) fit (solid line in Figure 3) to the derived reflectivity
spectrum. For this simple case, the frequency spectrum outside
the band of the data can be readily predicted by extrapolating the
resulting LMSE sinusoidal function outside the band of the origi-
nal data.
The important reciprocal relationship between the spectral perio-

dicity and the time thickness for the real and imaginary components
(equations 6 and 7) is dependent upon the symmetrical location of
time zero at the center of the layer. In practice, when composite
reflections occur, although it is not practical to define a time zero

that can be centered for all such physical layers, any reflectivity series
can still be represented as a sum of even and odd impulse pairs ref-
erenced to an analysis point. Therefore, all reflectivity spectra are
sums of such sinusoidal frequency responses, and they are fundamen-
tally predictable if those impulse pairs are known. To clarify what
happens in a general multilayer case, we construct a sparse reflectiv-
ity sequence (Figure 4a) composed of three individual components: a
predominantly even impulse pair (Figure 4b), a predominately odd
impulse pair (Figure 4c), and a single impulse (Figure 4d). Because
any pair of reflection coefficients can be uniquely represented by the
weighted sum of an even pair and an odd pair (Bracewell, 1965), the
complex spectrum of each component can be characterized by a pure
cosine function (equation 6) as the real part (solid line) and a pure
sine function (equation 7) as the imaginary part (dashed line). In this
example, the predominantly even reflector pair has a real spectrum
with larger amplitude than the imaginary spectrum (Figure 4f) and
vice versa for the predominantly odd pair (Figure 4g), whereas those
for the single reflector are of the same amplitude (Figure 4h). The
even and odd spectra for each individual event show the same fre-
quency periodicity, but they are shifted by one-quarter of the spectral
period. The composite reflectivity spectrum (Figure 4e) is a linear
combination of those component spectral sinusoids, producing
irregular peaks and troughs by local superposition. The frequencies
within the hypothetical data bandwidth (denoted with red) can then
be used to determine the individual sinusoidal components of the
spectrum (the red curves in Figure 4f–4h), and these can then be
extended beyond the original bandwidth (the black curves in

Figure 4. A multilayered reflectivity series centered at t ¼ 0 with the corresponding complex spectrum. Real and imaginary parts of the
spectrum are denoted by solid line and dashed line, respectively. The red portion hypothesizes the available seismic data band (the wavelet
has been divided out). (a) Composite reflectivity sequence, (b) predominantly even impulse pair, (c) predominantly odd impulse pair, (d) sin-
gle-impulse component, (e) complex spectrum of the composite reflectivity, (f) complex spectrum of the predominantly even impulse pair,
(g) complex spectrum of the predominately odd impulse pair, and (h) complex spectrum of the single impulse. The vertical axis is the relative
amplitude.
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Figure 4f–4h). These components are then added to obtain the band-
width-extended spectrum shown in the black curve in Figure 4e.
Beginning with a temporal analysis window of 2N þ 1 discrete

points with a sampling rate of dt, any zero-time centered impulse
pair gðt; nÞ can be expressed as

gðt; nÞ ¼ ðre þ roÞδðtþ n · dtÞ þ ðre − roÞδðt − n · dtÞ

¼ reII

�
t

2n · dt

�
þ roII

�
t

2n · dt

�
; (8)

where n · dt is the half the time thickness of the impulse pair with
n varying from 0 to N. The reflector pair can be decomposed into
a unit even pair IIðt∕2n · dtÞ and a unit odd pair IIðt∕2n · dtÞ
weighted by coefficients re and ro, respectively. The two reflection
coefficients for the impulse pair can thus be represented as re þ ro
and re − ro, either of which ranges from −1 to 1 and could be zero
denoting a single impulse. Correspondingly, the frequency spec-
trum of the impulse pair is given by (equations 6 and 7)

Gðf;nÞ¼2re ·cosð2π ·n ·dt ·fÞþi2ro sinð2π ·n ·dt ·fÞ: (9)

A reflectivity series with 2N þ 1 samples corresponds to K ¼ N þ
1 nested pairs of reflection coefficients. A time sample can have
zero reflectivity if re and ro are zero, but also if elements of the even
and odd reflectivity pairs are equal and opposite at a given time.
Thus, K is the number of impulse pairs, including all possible time
thicknesses (including a zero time thickness) in the analysis win-
dow. The broadband spectrum ranging from zero to the Nyquist
frequency of any reflectivity series within the analysis window
can thus be explicitly expressed as

SrðfÞ ¼
XK−1
n¼0

ð2reðnÞ · cosð2π · n · dt · fÞ

þ i2roðnÞ · sinð2π · n · dt · fÞÞ: (10)

For a real seismic trace, the narrowband data spectrum associated
with a sum of reflector pairs is a sum of frequency sinusoids times
the wavelet spectrum. Within a usable spectral band of seismic data
with an adequate signal-to-noise ratio (S/N), dividing out the wave-
let overprint provides a roughly flattened spectrum that coincides
with the portion of the broadband reflectivity spectrum (equation 10)
within the wavelet spectral limit (the red portion in Figure 4). The
relationship between the data spectral constraint (real part and
imaginary part separately) and the sinusoidal elements of varying
frequency periodicities within the same spectral limit can be formu-
lated as the forward modeling:

Sd ¼ Φaþ ε; (11)

where Sd is the wavelet-flattened data spectrum, Φ is the kernel ma-
trix consisting of sinusoidal atoms, a is the coefficients vector con-
taining roðnÞ and reðnÞ, and ε is the prediction residual. The kernel
has a dimension of M × K, where M is the number of frequencies
determined by the available bandwidth and the sampling rate in fre-
quency, K is the number of layers and thus also the number of cosine
(real part) or sine (imaginary part) elements indicated by equation 10,
which are varied to include all possible frequency periodicities.

We use the basis-pursuit method (Chen et al., 2001) to thus de-
compose the original band-limited data spectrum into a sparse
superposition of layer responses. The frequency extrapolation is ac-
complished by decomposing the spectrum into sinusoidal frequency
responses (atoms), extending them beyond the band of the seismic
data, and then summing them to form the broadband seismic trace.
The basis pursuit method solves for the coefficients for all sinusoidal
atoms in frequency in a direct manner by L1-norm global optimiza-
tion. Zhang and Castagna (2011) describe how the Chen et al. (2001)
basis pursuit method can be used to decompose layer responses in the
time domain. We use the same algorithm to do the decomposition in
the frequency domain.
Basis pursuit solves for the coefficients of superposed sinusoidal

frequency responses in equation 11 by minimizing the L2-norm of
prediction residual term regularized by the L1-norm of the solution
scaled by a regularization (trade-off) parameter λ:

min
a

½kSd −Φak2 þ λkak1�: (12)

Increasing this trade-off factor λ produces results with higher spar-
sity, whereas decreasing it may amplify the inversion noise. In real
applications, a proper regularization factor for the inversion is data
and model dependent and empirically determined by comparing re-
sults with well logs used for validation.
In our implementation, the coefficients reðnÞ and roðnÞ are the

output solutions of the basis pursuit inversion, corresponding to the
real part and the imaginary part of the available spectrum, respec-
tively. Any missing frequency outside the original bandwidth can
then be computed using equation 10. Because equations 8 and 9
share the same coefficients, the resulting reflectivity series can thus
be calculated by

srðtÞ ¼
XK−1
n¼0

ððreðnÞ þ roðnÞÞδðtþ ndtÞ

þ ðreðnÞ − roðnÞÞδðt − ndtÞÞ: (13)

It is important to note that, theoretically, there can be frequency
components of the reflectivity spectrum that are entirely outside the
band of the original data that violate our assumptions, and they can
never be recovered. The extrapolated frequencies are correct to the
extent that the layer model used to generate them is a good repre-
sentation of the true subsurface reflectivity; any deviation from a
sparse blocky earth model assumption may give rise to layers not
properly constrained by the original band of the data. For example,
layers that are too thin or are of high complexity are less likely to be
resolved by the layer inversion. Therefore, a successful extrapolation
of the complete frequency responses depends on the reasonableness
and accuracy of the decomposition of the complex spectrum into the
temporal impulse pair frequency spectra.

Practical implementation of the harmonic extrapolation
procedure

These steps are followed in the implementation of harmonic
extrapolation:

1) Check the validity of the method assumptions/constraints: Is
blocky layering an adequate description of the true earth struc-
ture? Is the wavelet well-known? Does convolutional modeling
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provide a good synthetic tie within the original band of the data?
If no well logs are available to ensure that the assumptions are
applicable, that the wavelet is correct, and to validate the ex-
tended frequencies, the extension will have to be interpreted
with great caution. For example, should the actual wavelet spec-
trum have notches, or be of a narrower band than assumed, the
result will be noise magnification at certain frequencies. In ad-
dition, uncharacterized periodicities in the wavelet spectrum
could result in the inversion producing false layering to repro-
duce those periodicities.

2) Check seismic data quality: Is the seismic data quality sufficient
such that there is at least a one-octave passband with a high
S/N? Again, this is best checked by synthetic seismogram con-
struction.

3) Set parameters: Is the sample rate sufficient for extension ob-
jectives? If not, resample the original data by Fourier transform
to increase the sampling frequency to an acceptable level rela-
tive to the desired output frequency band. Select a regularization
parameter. For noise-free cases, we use 0.0001. For noisy cases,
a regularization parameter on the order of 0.01 is usually accept-
able (basis pursuit denoising). This is empirically determined by
a best correlation between bandwidth-extended and synthetic
data in blind well validation tests. Select a temporal window
length.

4) Compute spectra and deconvolve the wavelet: For each seismic
trace, slide the analysis window along the trace and compute the
Fourier transform at every window location. Divide the spectra
by the wavelet spectrum (the wavelet spectra can be time vary-
ing if necessary). The real part of the resulting spectrum is the
spectrum of the even (symmetrical) part of the windowed trace
divided by the wavelet spectrum, and it is the superposition of
different cosine functions with different periodicities, each rep-
resenting an even reflection coefficient impulse pair of a given
thickness. The imaginary part of the resulting spectrum is the
spectrum of the odd (antisymmetrical) part of the windowed
trace divided by the wavelet spectrum, and it is the superposi-
tion of different sine functions with different periodicities, each
representing an odd reflection coefficient impulse pair of a
given thickness.

5) Decompose local spectra into a superposition of layer spectra:
Use a basis-pursuit atomic decomposition algorithm (Chen et al.,
2001; for further discussion, see Zhang and Castagna, 2011) to
decompose the real and imaginary parts of the spectrum into
summations of cosines and sines. At this point, a regularization
parameter is required to weight the sparsity constraint (the selec-
tion criteria are discussed above).

6) Extend the bandwidth of the data: Extrapolate the decomposed
sinusoids to the band of interest, multiply by the desired output
wavelet spectrum, and inverse Fourier transform to get a time
series associated with each window position. Sum the time series
over all window positions to form the bandwidth-extended trace.
The windows are tapered such that summing in the overlap re-
gion conserves energy.

We will test the efficacy of the harmonic extrapolation syntheti-
cally on blocky earth structures, with and without noise. We will see
that resolution enhancement is readily demonstrated on wedge
models. However, because the method relies on the simplicity and
periodicity of the reflectivity spectrum, we also test the method for a
highly interbedded earth model with locally highly complex spec-

tra. The ability of harmonic extrapolation to achieve useful band-
width extension for a blocky earth model, and its superiority over
frequency invention methods, will be demonstrated in the following
comparative studies (synthetic and real data examples).

SYNTHETIC EXAMPLES

The theoretical validity of the various spectral extension methods
in increasing the seismic resolution can be reasonably demonstrated
on synthetic tests, whereby a low-frequency synthetic is bandwidth
extended and compared with a high-frequency synthetic derived
from the same earth-reflectivity model. The resulting bandwidth-
extended data can be visually compared with known variations
in layer thickness to see if additional resolution is achieved. Because
a perfect bandwidth extension should predict the high-frequency
synthetic perfectly, the residual between calculated and predicted
high-frequency seismograms provides a firm test of the efficacy
of the various methods and indicates the magnitude of the errors
involved. All the traces are plotted with the same relative amplitude
scale to provide reasonable comparisons and reported root-mean-
square (rms) errors are relative to the rms amplitude of the high-
frequency target synthetic.

Wedge models

Wedge models are commonly used to study resolution as a layer is
thinned from above tuning to zero thickness. Due to the finite data
bandwidth, it will not be possible for all sinusoidal atoms of the
decomposition to be completely uncorrelated. The presence of a cor-
relation between these atoms over the limited seismic band is an in-
herent difficulty in determining the exact solution for all reflection
coefficients. Figure 5 illustrates the inherent resolving limitation of
harmonic extrapolation by a thinning wedge model with equal and
opposite reflection coefficients at the top and base. The wedge layer
time thicknesses vary from 50 to 1 ms with an interval of 1 ms, yield-
ing the amplitude spectra for each trace (Figure 5a) showing the
gradually variable frequency periodicities. The resulting spectra (Fig-
ure 5b) extrapolated from the response of this model to a 30 Hz wave-
let indicate that although the method can resolve layers below the
original tuning thickness, which is approximately 13 ms in this case
(Chung and Lawton, 1995), the inverted and extrapolated spectra
deteriorate at thicknesses less than 7 ms. This ambiguity arises from
the indistinct frequency periodicities produced by the closely spaced
reflectors. Obviously, data distortion due to noise or incorrect wavelet
determination also interferes with the decomposition of the contrib-
uting frequency periodicity to the total spectrum for a given event
within the usable band of the data. These factors limit the resolution
that can be achieved by harmonic extrapolation.
Figure 6 shows a wedge model with equal reflection coefficients

of the same sign at the top and base of the layer. The time thick-
nesses of the reflector pairs for each synthetic trace are varied from
25 to 0.5 ms to represent a wedge thinning, with an interval of
0.5 ms, which is the sample rate of the data. A 30 Hz Ricker wavelet
is used to model the low-frequency response of the wedge (Fig-
ure 6a). The top and bottom reflectors can be visually distinguished
at or above a time thickness of 12.5 ms at this wavelet center fre-
quency, using the Ricker criterion (flat topping of the waveform).
The phase acceleration, loop reconvolution, and harmonic extrapo-
lation methods are applied to the original low-frequency synthetic
to restore the missing high frequencies. In practice, doubling the
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original seismic center frequency is regarded as a significant im-
provement in resolution. All the broadband frequency extended out-
puts are thus spectrally shaped to the spectrum of a 60 Hz standard
Ricker wavelet by multiplying by the wavelet spectrum. In this case,

the low frequencies in the original signal are reduced in amplitude,
but are still preserved, and thus present to be shaped back to the
original spectrum. The phase acceleration and loop reconvolution
methods produce sharper events (Figure 6b and 6c), but neither im-
prove the temporal resolution (defined as the ability to distinguish
separate events from the top and base reflectors) as compared
with the original synthetic. Furthermore, the loop reconvolution
method produces false events above and below the actual reflectors
(Figure 6c). Harmonic extrapolation to 60 Hz, on the other hand,
resolves the reflections at approximately 7 ms, not quite a twofold
improvement, as well as sharpening the events (Figure 6d). The re-
sulting harmonic extrapolation wedge is very similar to, though not
exactly the same as, the true high-frequency synthetic target (Fig-
ure 7a), calculated directly with the known reflectivity coefficients
and a 60 Hz Ricker wavelet.
It is further revealing to look at the prediction residuals by various

methods. The harmonic extrapolation computes the high-frequency
section with reasonable fidelity with only a relative rms error of
9.5% (Figure 7d). The fact that harmonic extrapolation passes this
simple test is to be expected. However, failing the test, as phase
acceleration (an rms error of 87.5% in Figure 7b) and loop recon-
volution (an rms error of 80.8% in Figure 7c) do, is significant. This
shows that these methods must be used with great caution, and not
be used for quantitative work.

Blocky structured sparse reflectivity series

A more realistic, but still blocky, synthetic reflectivity series de-
signed to simulate an earth model with multiple layers (Figure 8a–
8l), has a sampling rate of 2 ms, resulting in a Nyquist frequency of
250 Hz (Figure 9a–9l). A low-frequency synthetic seismogram
(Figure 8b) is generated by convolving the reflectivity series with
a 30 Hz Ricker wavelet. A noisy low-frequency synthetic seismo-
gram (Figure 8h) is obtained by adding a band-limited random noise

series with signal power that is 10% of that of the
noise-free synthetic seismogram. A higher fre-
quency band of the reflectivity series (Figure 8g)
is obtained by convolving with a 60 Hz Ricker
wavelet, and it is used as a standard against which
predicted high-frequency data will be evaluated.
In the frequency domain, the phase acceleration
and loop reconvolution can produce broader spec-
tra that are comparable with the high-frequency
target (Figure 9g) for noise-free (Figure 9c and
9e) and noisy (Figure 9i and 9k) data. However,
even without noise, the misfits (Figure 8d and 8f)
between the synthetic and extrapolated high-fre-
quency traces are of the same order of magnitude
as the original data. These large errors would hin-
der the reliability of subsequent quantitative seis-
mic trace analysis (such as seismic inversion or
multiattribute analysis). The frequency invention
methods, though not very reliable, are relatively
immune to noise because they are driven primarily
by the location of events, which is for the most
part the same on the original and bandwidth-ex-
tended data. If the noise is not of a sufficient level
to alter the event location, it does not have a great
influence on the residual, which is dominated by

Figure 5. Amplitude spectra comparison for (a) a wedge model and
(b) the frequency extrapolated result by harmonic extrapolation.
The original model consists of layers with thicknesses varying from
50 to 1 ms by the 1 ms sampling rate. The reflection coefficients for
each trace are equal and opposite at the top and base. (b) The in-
verted and extrapolated spectra are predicted from a narrow band of
the original model by a 30 Hz Ricker wavelet, which gives a tuning
thickness approximately 13 ms.

Figure 6. Wedge-model tests by various methods. (a) Low-frequency (30 Hz) seismic
responses, (b) high-frequency (60 Hz) recovery by phase acceleration, (c) high-fre-
quency (60 Hz) recovery by loop reconvolution, and (d) high-frequency (60 Hz) recov-
ery by harmonic extrapolation. The sample rate of the data is 0.5 ms.
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how colocated and similar in shape the events are relative to the syn-
thetic.
Using the same band-limited low-frequency synthetic seismo-

grams (Figure 10a and 10g), the broadband synthetic (Figure 10b)
with the 60 Hz Ricker wavelet is recovered by
harmonic extrapolation with good fidelity (Fig-
ure 10c) and only a 6.3% rms error (Figure 10d)
for the noise-free data. This noise-free extrapola-
tion error arises from the nonuniqueness in solving
for the frequency periodicities within the limited
bandwidth. For the noisy result (Figure 10e), the
residual of prediction to 60 Hz increases signifi-
cantly to a 32.5% rms error (Figure 10f) mainly
due to the error in the extrapolation caused by
the low-frequency noise in the usable band. How-
ever, the increment of a 26.2% rms error suggests
that the original noise (a power ratio of 10% cor-
responds to a relative rms of 31.6%) has been
somewhat suppressed by a relatively large regu-
larization parameter in the basis-pursuit inversion.
More importantly, the fact that the prediction error
is as randomly distributed because the original
noise implies that harmonic extrapolation does
perform robustly against data distortion when the
useful signal is dominant.
Extrapolating to higher frequencies, a broader

band synthetic (Figure 10h) using a 90 Hz Ricker
wavelet is also well-reproduced (Figure 10i) with
good, though somewhat reduced, fidelity that is

of 14.3% rms error (Figure 10j). The reason for a fidelity reduction
from 60 to 90 Hz in the noise-free case is that for an imperfectly
matched frequency periodicity determined from the usable band-
width, the mismatch increases at frequencies further away from

Figure 7. Residuals between the high-frequency (60 Hz) synthetic target section (a) and
the extrapolated results by various methods: (b) phase acceleration with a 87.5% rms
error, (c) loop reconvolution with a 80.8% rms error, and (d) harmonic extrapolation
with a 9.5% rms error.

Figure 8. Algorithm tests on a blocky structured reflectivity series by frequency invention methods. (a) Original sparse reflectivity, (b) low-
frequency (30 Hz) synthetic trace, (c) high-frequency (60 Hz) recovery by phase acceleration, (d) residual for phase acceleration result with a
116.4% rms error, (e) high-frequency (60 Hz) recovery by loop reconvolution, (f) residual for loop reconvolution result with a 74.7% rms error,
(g) high-frequency (60 Hz) target synthetic trace, (h) low-frequency (30 Hz) synthetic trace (10% noise added), (i) high-frequency (60 Hz)
recovery by phase acceleration (noisy), (j) residual for phase acceleration result (noisy) with a 125.9% rms error, (k) high-frequency (60 Hz)
recovery by loop reconvolution (noisy), and (l) residual for loop reconvolution result (noisy) with a 80.6% rms error.
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the calibration frequencies. The prediction residual (36.9% rms
error in Figure 10l) for this 90 Hz extrapolated result in the presence
of noise (Figure 10k) is thus reasonably larger than that of the
corresponding 60 Hz case. However, the percentage fidelity reduc-
tion in high-frequency recoveries from 60 to 90 Hz is less in the

noisy case than in the noise-free case because the error due to
noise is added to the inversion error and dominates the fidelity per-
centage. The corresponding amplitude spectra (Figure 11a–11l)
show that the original bandwidth can be at least doubled with minor
residuals.

Figure 9. Corresponding amplitude spectra for the
test results on the blocky sparse-reflectivity series
by frequency invention methods. (a) Spectrum of
original reflectivity, (b) spectrum of low-frequency
(30 Hz) synthetic, (c) spectrum of phase accelera-
tion result (60 Hz), (d) spectrum of residual for
phase acceleration, (e) spectrum of loop reconvolu-
tion result (60 Hz), (f) spectrum of residual for loop
reconvolution, (g) spectrum of high-frequency
(60 Hz) target synthetic, (h) spectrum of low-fre-
quency (30 Hz) synthetic with 10% noise added,
(i) spectrum of phase acceleration result (60 Hz)
from the noisy data, (j) spectrum of the residual
for phase acceleration (noisy), (k) spectrum of loop
reconvolution result (60 Hz) from the noisy data,
and (l) spectrum of the residual for loop reconvo-
lution (noisy).

Figure 10. Algorithm tests on the blocky structured reflectivity series by the harmonic extrapolation method. (a) Low-frequency (30 Hz) synthetic
trace, (b) high-frequency (60 Hz) target synthetic trace, (c) high-frequency (60 Hz) recovery in noise-free case, (d) residual for the noise-free case
(60 Hz) with a 6.3% rms error, (e) high-frequency (60 Hz) recovery in noisy case, (f) residual for the noisy case (60 Hz) with a 32.5% rms error,
(g) low-frequency (30 Hz) synthetic trace with 10% noise added, (h) high-frequency (90 Hz) target synthetic trace, (i) high-frequency (90 Hz)
recovery in noise-free case, (j) residual for the noise-free case (90 Hz) with a 14.3% rms error, (k) high-frequency (90 Hz) recovery in noisy case,
and (l) residual for the noisy case (90 Hz) with a 36.9% rms error.
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Figure 12 shows what happens if recovering the reflectivity spec-
trum out to the Nyquist frequency is attempted. The full band spec-
trum (Figure 12c) extrapolated from the low-frequency noisy
synthetic by harmonic extrapolation and the corresponding inverted
reflectivity (Figure 12d) show good recovery for the original reflec-
tivity series (Figure 12a and 12b), giving a prediction residual (Fig-
ure 12e and 12f) with an rms error of 41.7%. This is reasonably
larger than that of the corresponding 60 and 90 Hz broadband cases.
The residual spectrum shows a roughly increasing trend from low to
high frequency.

These synthetic tests suggest that the harmonic extrapolation
method can stably predict the missing frequencies under the circum-
stance of a blocky earth model providing the noise level is small and
the bandwidth extension is limited.

Random numbers series for harmonic extrapolation

These favorable harmonic extrapolation results are not unex-
pected for a blocky earth model in which we observe readily char-
acterizable frequency periodicities. We construct, as a worst-case

Figure 11. Corresponding amplitude spectra for the
test results on the blocky sparse reflectivity series by
the harmonic extrapolation method. (a) Spectrum of
low-frequency (30 Hz) synthetic, (b) spectrum of
high-frequency (60 Hz) target synthetic, (c) spec-
trum of harmonic extrapolation result (60 Hz) in
the noise-free case, (d) spectrum of residual for
the noise-free case (60 Hz), (e) spectrum of har-
monic extrapolation result (60 Hz) in the noisy case,
(f) spectrum of residual for the noisy case (60 Hz),
(g) spectrum of low-frequency (30 Hz) synthetic
with 10% noise added, (h) spectrum of high-fre-
quency (90 Hz) target synthetic, (i) spectrum of har-
monic extrapolation result (90 Hz) in the noise-free
case, (j) spectrum of residual for the noise-free case
(90 Hz), (k) spectrum of harmonic extrapolation re-
sult (90 Hz) in the noisy case, and (l) spectrum of
residual for noisy case (90 Hz).

Figure 12. Spectra comparison between the origi-
nal blocky reflectivity model and the full-band
spectral extension by harmonic extrapolation from
the 30 Hz low-frequency noisy synthetic data.
(a) Amplitude spectrum of the original reflectivity,
(b) original sparse reflectivity, (c) full-band fre-
quency extrapolated spectrum, (d) inverted reflec-
tivity series, (e) full-band prediction residual
spectrum (41.7% rms error), and (f) prediction
residual in the time domain.
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scenario (Figure 13a–13h), an earth model with completely random
numbers (sampling rate is 2 ms). The sparse structure representation
is then not appropriate because the low-frequency seismogram
(30 Hz) is then a superposed response from too many very thin in-
terbedded layers to separate (Figure 13e). The high-frequency re-
coveries by spectral extrapolation in this case are not acceptable;
the error (Figure 13d) in recovery of the 60 Hz result is nearly

of the same magnitude (an rms error of 68.4%) as the high-fre-
quency synthetic (Figure 13b) and it greatly increases (an rms error
of 110.7%) for the 90 Hz result (Figure 13h).
Inspection of the corresponding error spectra (Figure 14a–14h)

reveals an interesting fact: The error is low at frequencies at which
there is any amplitude in the original spectrum, and it blows up
immediately above the highest frequency in the input wavelet (Fig-

ure 14d and 14h). This good recovery of the re-
flectivity spectrum within the data spectral limit
is a great virtue for seismic interpretation because
the observed behavior of measured data from real
wells has shown the reflectivity spectra to be of
“blue” color in a global sense, meaning that spec-
tral amplitudes tend to increase with frequency
(Walden and Hosken, 1985). Therefore, bluing is
an important process to accentuate high frequen-
cies such that the wavelet overprinted seismic
spectrum can be similar in shape to the reflectiv-
ity spectra. The random number series test sug-
gests that, unlike seismic deconvolution that
boosts noise and useful signal by the same factor
at any given frequency, harmonic extrapolation,
although unable to extrapolate outside the origi-
nal band in this case, could be useful in boosting
the high-frequency signal more than the high-fre-
quency noise in spectral bluing, thus improving
the seismic resolution within the original band of
the data.

REAL DATA RESULTS

Unlike the synthetic examples in which the
original earth model is known and broadband
objective reflections are readily simulated for
bandwidth extension evaluation, the complete
frequency components of the actual reflectivity
series in the real world can only be partially rep-
resented by a limited number of available wells,
which cannot be assumed to be entirely accurate.
In this sense, various band-pass versions of the
reflectivity series derived from well logs can be
used as criteria, only to a certain extent, to deter-
mine the validity of newly generated frequency
components by those spectral extension tech-
niques. We require a data set with an initial good
well tie because any small error in time-depth con-
version will become more significant at higher
frequencies. Because the initial time-depth func-
tion deemed adequate at low frequency will also
be used at high frequency, some correlation reduc-
tion for this reason alone is to be expected. The
Vietnam data set studied by Ha (2014) met our
criterion of a good low-frequency well tie (corre-
lation coefficient = 0.87; see Figure 15 obtained
using the Hampson-Russell synthetic modeling
package, 2008). The wavelet (Figure 16) was ex-
tracted using the well-log reflectivity and assum-
ing a constant phase as a function of frequency.
The resulting extracted wavelet was nearly zero
phase.

Figure 13. Algorithm tests on a completely random number series by the harmonic
extrapolation method. (a) Original random number series, (b) high-frequency (60 Hz) tar-
get seismogram, (c) high-frequency (60 Hz) recovery, (d) residual for the 60 Hz result with
a 68.4% rms error, (e) low-frequency (30 Hz) synthetic seismogram, (f) high-frequency
(90 Hz) target seismogram, (g) high-frequency (90 Hz) recovery, and (h) residual for the
90 Hz result with a 110.7% rms error.

Figure 14. Corresponding amplitude spectra for the test results on the random number
series by the harmonic extrapolation method. (a) Spectrum of a random number series,
(b) spectrum of the high-frequency (60 Hz) target synthetic seismogram, (c) spectrum of
the high-frequency (60 Hz) recovery, (d) spectrum of residual for the 60 Hz result,
(e) spectrum of the low-frequency (30 Hz) synthetic seismogram; (f) spectrum of
the high-frequency (90 Hz) target synthetic seismogram, (g) spectrum of the high-fre-
quency (90 Hz) recovery; and (h) spectrum of the residual for the 90 Hz result.
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Figure 17 shows the results of applying frequency inventions and
harmonic extrapolation to a seismic line through the well location.
The original band of the seismic section (Figure 17a) is roughly
included in the band pass 0–10–65–70 Hz, and the spectrally broad-
ened results (see Figure 17b for phase acceleration, Figure 17c
for loop reconvolution, and Figure 17d for harmonic extrapolation)
are filtered to the same broadband 0–10–120–130 Hz, which about
doubles the frequency content of the original data, resulting in
sharper events. Looking at the sections alone, the validity, if any,
of the bandwidth extension is not clear because the broadband earth
model is not known. Nevertheless, the original narrowband data
themselves actually provide a basic criterion to evaluate the effects
of the different methods on the seismic data because fidelity should
not be greatly degraded in the original data band
in a valid spectral extension operation. If the
original frequencies are preserved, the high-fre-
quency data can be low-cut filtered and spectrally
shaped to restore the original spectrum; we can
thus loosely test whether the methods are invert-
ible to the original data by simple band-pass
filtering back to the original frequency band. The
significant residuals with the original data by
phase acceleration (a 53.8% rms error in Fig-
ure 18a) and loop reconvolution (a 30.8% rms
error in Figure 18b) imply that the original fre-
quency components are greatly altered. The fre-
quency invention methods badly fail the test.
However, the harmonic extrapolation result (Fig-
ure 18c) shows only a minor error (10.0% rms).
Another test is to evaluate the synthetic tie for

only frequencies (70–80–120–130 Hz) outside the
band of the original data. For the purpose of this
high-frequency observation, we choose an analysis
window of the original synthetic tie (Figure 19a) at
the well location with an initial excellent correla-
tion coefficient of 0.96. The correlation has been
reduced to 0.72 for the harmonic extrapolation re-
sult (Figure 19d), and it is entirely inadequate for
the other methods (0.20 for phase acceleration
[Figure 19b] and 0.45 for loop reconvolution [Fig-
ure 19c]). Possible causes for the reduced correla-
tion coefficient of harmonic extrapolation relative
to the original data include: (1) small time-depth
errors, (2) magnification of noise, and (3) devia-
tions from the presumed blocky earth model evi-
dent in the original well logs (Figure 15).
We can investigate the statistical significance

of the correlations between those high-frequency
extrapolated data and the well-log synthetic us-
ing an f-test (Snedecor and Cochran, 1989). This
F-statistic for validating the prediction model is
designed to test a null hypothesis stating there is
no relationship between two measured phenom-
ena (Fisher, 1925). The Fisher f coefficient is
given by

f ¼ ðr2∕KÞ∕½ð1 − r2Þ∕ðn − K − 1Þ�; (14)

where r is the correlation coefficient, K is the
number of model parameters, and n is the num-

ber of data points. We take the number of free parameters to be the
number of samples in the seismic wavelet. From this perspective,
each well-log reflection coefficient is assumed to be independent
from the others, and based on the convolutional model, the wavelet
amplitudes represent the least mean-square-error coefficients needed
to multiply the time-shifted coefficients by to produce a weighted
sum predicting the seismic amplitude at each time. To the extent that
the reflection coefficients are indeed independent, an f value signifi-
cantly greater than unity would suggest that the model variance
dominates over the residual variance, and it thus implies that the
extrapolated high frequencies giving the correlation can be regarded
as consistent with the underlying model. For the data shown in Fig-
ure 19 for harmonic extrapolation, r ¼ 0.72, n ¼ 100, and k ¼ 25,

Figure 15. Original tie between well-log synthetic and seismic data. The panel includes
gamma ray, density, and sonic logs, along with the synthetic trace (blue), the composite
trace at the well location (red) and the neighboring traces (black). The correlation co-
efficient is 0.87 for the entire log ranging from 1730 to 2430 ms.

Figure 16. Extracted seismic wavelet at the well location assuming the wavelet phase to
be constant. The entire well log is used to determine the solution. (a) The wavelet in the
time domain and (b) the amplitude and phase spectrum of the wavelet. The narrow usa-
ble bandwidth is taken between 10 and 55 Hz.

Spectral bandwidth extension W13

D
ow

nl
oa

de
d 

05
/1

0/
17

 to
 9

6.
64

.6
1.

21
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



yields an f ¼ 3.19, suggesting that the 0.72 correlation is unlikely to
be spurious. On the other hand, for frequency invention methods,
even if their very poor correlations are thought to be acceptable,
the f-test (f ¼ 0.12 for phase acceleration and f ¼ 0.75 for loop
reconvolution) indicates poor statistical significance.

Table 1 includes all the parameters used in the comparative stud-
ies for the various methods. Note that for the loop reconvolution
method, all the data are oversampled to avoid aliasing and are
readily resampled back to any desired sampling rate with an accept-
able Nyquist frequency after the reconvolution.

Figure 17. Original seismic section (0–10–65–
70 Hz) and spectrally extended results (0–10–
120–130 Hz) by various methods. (a) Original data,
(b) spectrally broadened data by phase acceleration,
(c) spectrally broadened data by loop reconvolu-
tion, and (d) spectrally broadened data by harmonic
extrapolation. The dark block denotes the well lo-
cation.

Figure 18. Spectrally extended seismic sections by
various methods are filtered back to the original
bandwidth and compared with the original data.
(a) Residual for phase acceleration result with a
53.8% rms error, (b) residual for loop reconvolution
result with a 30.8% rms error, and (c) residual for
harmonic extrapolation result with a 10.0% rms er-
ror. The apparent error could be further reduced by
spectral shaping.

Figure 19. Comparison for well-log synthetic ties
at (a) the original frequency, and (b-d) with only ex-
tended high frequencies by various methods and the
original seismic band excluded. The reference syn-
thetic (blue) is generated by convolving the well-log
reflectivity with the (a) seismic wavelet or (b-d) an
analytical band-pass filter (70–80–120–130 Hz).
The composite traces (red) are extracted from the
traces (black) near the well location. The correlation
window is specifiedwithin 2050–2250ms. (a)Origi-
nal well tie. The correlation coefficient is 0.96;
(b) phase acceleration result. The correlation coef-
ficient is 0.20; (c) loop reconvolution result. The
correlation coefficient is 0.45; (d) harmonic extrapo-
lation result. The correlation coefficient is 0.72.
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CONCLUSIONS

The subject of bandwidth extension is controversial. We know
from digital signal processing that once a given frequency within
a signal has been zeroed out, it is not recoverable by inverse linear
filtering. Earth attenuation and noise limit the frequency band over
which we can obtain positive S/N. Thus, if linear deconvolution
operators are pushed too hard to boost high frequencies, the result
is primarily noise magnification. This fact can easily lead one to the
conclusion that bandwidth extension is theoretically not possible
— a false and overstated conclusion in the opinion of these authors.
We also know that there are a variety of ways that a seismic trace

can be manipulated to produce high-frequency traces. Two of these
methods are phase acceleration and loop reconvolution. These meth-
ods are not based on physics and essentially invent frequency content
outside the seismic band. Wedge models, however, demonstrate that
neither of these methods, although sharpening existing events, im-
prove the resolution. The frequency invention methods also exhibit
other deleterious consequences such as creating false events (in the
case of loop reconvolution) and not filtering back to the input data
(in both cases); indicating that the convolutional relationship among
the data, the reflectivity, and the wavelet, has been destroyed within
the original frequency band. Synthetic tests show poor correlation of
the invented frequencies to high-frequency synthetics. Such methods
may produce useful attributes for visualization, but we urge extreme
caution if quantitative analysis, such as impedance inversion, is to be
used on such bandwidth-extended outputs.
Harmonic extrapolation can be a valid bandwidth extension tech-

nique, based on physics, that is possibly applicable when the earth
conforms well to the a priori assumption of a blocky impedance
structure. A sparsely layered earth structure results in correlations
in the reflectivity spectrum between frequencies across the digital
spectrum out to the Nyquist frequency. In the simplest case of a
single layer with two reflection coefficients, the reflectivity spec-
trum is sinusoidal in frequency, and generally a superposition of a
sine and cosine related to the odd and even parts of the reflection
coefficient pair. In the more general case of many superposed layer
responses, the periodicity may or may not be adequately character-
ized within the seismic band. If the layers are thick and few enough,
and the data are sufficiently noise free, it may be possible to decom-
pose the spectrum to a summation of a limited number of sinusoids
if the seismic wavelet spectrum is known. In this situation, frequen-
cies outside the band are readily extrapolated. However, even in a
noise-free case, if the reflectivity series is too complicated, as in the
case of a random series of closely spaced reflection coefficients,

bandwidth extension may not be achievable without additional
constraints. Of note, even in this worst-case scenario, harmonic
extrapolation can be applied to blue the spectrum within the band
of the data, without boosting the high-frequency noise to the extent
that would result from a simple spectral shaping or deconvolution.
A real data example shows that harmonic extrapolation produces

potentially useful bandwidth-extended data that filter back to the
original data with good fidelity. For the real data case studied, outside
the seismic band, harmonic extrapolation produces a statistically sig-
nificant correlation coefficient with a synthetic computed over the
same bandwidth, whereas frequency-invention methods exhibit very
poor and unacceptable correlation over the same band.

ACKNOWLEDGMENTS

The authors are very grateful to M. Sacchi for his assistance and
valuable suggestions. Thanks also to E. Gebretsadik and V. Ha for
their efforts on the real data example. We also wish to thank Hamp-
son-Russell for use of their software.

REFERENCES

Avendano, C., H. Hermansky, and E. Wan, 1995, Beyond Nyquist: Towards
the recovery of broad-bandwidth speech from narrow-bandwidth speech:
Proceedings of Eurospeech, 165–168.

Barnes, A. E., 2007, A tutorial on complex seismic trace analysis: Geophys-
ics, 72, no. 6, W33–W43, doi: 10.1190/1.2785048.

Bracewell, R. N., 1965, The Fourier transform and its applications:
McGraw-Hill Publication Corporation.

Chávez-Pérez, S., 2015, Seismic bandwidth extension and resolution im-
provement: What works: SEG.

Chen, S. S., D. L. Donoho, and M. A. Saunders, 2001, Atomic decompo-
sition by basis pursuit: SIAM Review, 43, 129–159.

Chopra, S., and K. J. Marfurt, 2007, Seismic attribute for prospect identifi-
cation and reservoir characterization:SEG Geophysical Developments 11.

Chung, H., and D. C. Lawton, 1995, Frequency characteristics of seismic
reflections from thin beds: Canadian Journal of Exploration Geophysics,
31, 32–37.

Fisher, R. A., 1925, Statistical methods for research workers: Oliver and
Boyd.

Fornari, E., 1984, The incredible father Landell de Moura (2nd ed.): Army
Library Publishing.

Ha, V., 2014, Application of spectral inversion to enhance seismic resolution
in Nam Con Son basin, offshore Vietnam: Master of Science thesis, Uni-
versity of Houston.

Hampson-Russell software, 2008, Theory of the STRATA post-stack seis-
mic inversion program, CE8 version: CGG Veritas.

Hargreaves, N., S. Treitel, and M. Smith, 2013, Frequency extension, res-
olution, and sparse inversion: 83rd Annual International Meeting, SEG,
Expanded Abstracts, 3345–3349.

Kallweit, R. S., and L. C. Wood, 1982, The limits of resolution of zero-phase
wavelets: Geophysics, 47, 1035–1046, doi: 10.1190/1.1441367.

Lander, C. W., 1993, Power electronics (3rd ed.): McGraw-Hill.

Table 1. Comparison of parameters used for all comparative studies. All the methods are implemented on the entire trace. The
original traces are oversampled in the loop reconvolution and are then resampled back to the original sample rate.

Comparison of parameters Phase acceleration
Loop

reconvolution
Harmonic

extrapolation
Trace

sampling rate
Wavelet band-
pass limit

Wedge model test k ¼ 8; mi ¼ 0, 1, 2, 3,
4, 5, 6, 7

Oversampled
to 0.1 ms

λ ¼ 0.0001 0.5 ms 60 Hz Ricker

Blocky reflectivity series k ¼ 8; mi ¼ 0, 1, 2, 3,
4, 5, 6, 7

Oversampled
to 0.5 ms

λ ¼ 0.0001 (noise-free)
λ ¼ 0.01 (noisy)

2 ms 60 and 90 Hz Ricker

Random number series — — λ ¼ 0.0001 2 ms 60 and 90 Hz Ricker

Real data example k ¼ 8; mi ¼ 0, 1, 2, 3,
4, 5, 6, 7

Oversampled
to 0.5 ms

λ ¼ 0.01 2 ms 0–10–65–70 Hz
and 70–80–120–130 Hz

Spectral bandwidth extension W15

D
ow

nl
oa

de
d 

05
/1

0/
17

 to
 9

6.
64

.6
1.

21
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

http://dx.doi.org/10.1190/1.2785048
http://dx.doi.org/10.1190/1.2785048
http://dx.doi.org/10.1190/1.2785048
http://dx.doi.org/10.1190/1.1441367
http://dx.doi.org/10.1190/1.1441367
http://dx.doi.org/10.1190/1.1441367


Mallat, S., 2009, A wavelet tour of signal processing the sparse way (3rd
ed.): Elsevier Company.

Marfurt, K. J., and R. L. Kirlin, 2001, Narrow-band spectral analysis and
thin-bed tuning: Geophysics, 66, 1274–1283, doi: 10.1190/1.1487075.

Oldenburg, D. W., T. Scheuer, and S. Levy, 1983, Recovery of acoustic
impedance from reflection seismograms: Geophysics, 48, 1318–1337,
doi: 10.1190/1.1441413.

Partyka, G., J. Gridley, and J. Lopez, 1999, Interpretational applications of
spectral decomposition in reservoir characterization: The Leading Edge,
18, 353–360, doi: 10.1190/1.1438295.

Puryear, C. I., and J. P. Castagna, 2008, Layer-thickness determination and
stratigraphic interpretation using spectral inversion: Theory and applica-
tion: Geophysics, 73, no. 2, R37–R48, doi: 10.1190/1.2838274.

Pyke, A. A., 1997, Extrapolation of wideband speech from the telephone
band: M.A.S. thesis, University of Toronto.

Sheriff, R. E., and L. P. Geldart, 1995, Exploration seismology: Cambridge
University Press.

Smith, M., G. Perry, J. Stein, A. Bertrand, and G. Yu, 2008, Extending seis-
mic bandwidth using the continuous wavelet transform: First Break, 26,
97–102.

Snedecor, G. W., and W. G. Cochran, 1989, Statistical methods (8th ed.):
Iowa State University Press.

Stark, T. J., 2009, Frequency enhancement via an integer multiplier or just
another GeoWizardry attribute: 79th Annual International Meeting, SEG,
Expanded Abstracts, 1092–1096.

Taner, M. T., F. Koehler, and R. E. Sheriff, 1979, Complex seismic trace
analysis: Geophysics, 44, 1041–1063, doi: 10.1190/1.1440994.

Tarantola, A., 2005, Inverse problem theory and methods for model param-
eter estimation: SIAM.

Taub, H., and D. L. Schilling, 1986, Principles of communication systems:
McGraw-Hill.

Taylor, H. L., S. C. Banks, and J. F. McCoy, 1979, Deconvolution with the
l1norm: Geophysics, 44, 39–52, doi: 10.1190/1.1440921.

van Riel, P., and A. J. Berkhout, 1985, Resolution in seismic trace inversion
by parameter estimation: Geophysics, 50, 1440–1455, doi: 10.1190/1
.1442012.

Walden, A. T., and J. W. J. Hosken, 1985, An investigation of the spectral
properties of primary reflection coefficients: Geophysical Prospecting, 33,
400–435, doi: 10.1111/gpr.1985.33.issue-3.

Walker, C., and T. J. Ulrych, 1983, Autoregressive recovery of the acoustic
impedance: Geophysics, 48, 1338–1350, doi: 10.1190/1.1441414.

Widess, M. B., 1973, How thin is a thin bed: Geophysics, 38, 1176–1180,
doi: 10.1190/1.1440403.

Young, P., and A. Wild, 2005, Cosmetic enhancement of seismic data by
loop reconvolution: CSEG, Expanded Abstracts, 78–80.

Zhang, R., and J. P. Castagna, 2011, Seismic sparse-layer reflectivity inver-
sion using basis pursuit decomposition: Geophysics, 76, no. 6, R147–
R158, doi: 10.1190/geo2011-0103.1.

W16 Liang et al.

D
ow

nl
oa

de
d 

05
/1

0/
17

 to
 9

6.
64

.6
1.

21
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

http://dx.doi.org/10.1190/1.1487075
http://dx.doi.org/10.1190/1.1487075
http://dx.doi.org/10.1190/1.1487075
http://dx.doi.org/10.1190/1.1441413
http://dx.doi.org/10.1190/1.1441413
http://dx.doi.org/10.1190/1.1441413
http://dx.doi.org/10.1190/1.1438295
http://dx.doi.org/10.1190/1.1438295
http://dx.doi.org/10.1190/1.1438295
http://dx.doi.org/10.1190/1.2838274
http://dx.doi.org/10.1190/1.2838274
http://dx.doi.org/10.1190/1.2838274
http://dx.doi.org/10.1190/1.1440994
http://dx.doi.org/10.1190/1.1440994
http://dx.doi.org/10.1190/1.1440994
http://dx.doi.org/10.1190/1.1440921
http://dx.doi.org/10.1190/1.1440921
http://dx.doi.org/10.1190/1.1440921
http://dx.doi.org/10.1190/1.1442012
http://dx.doi.org/10.1190/1.1442012
http://dx.doi.org/10.1190/1.1442012
http://dx.doi.org/10.1111/gpr.1985.33.issue-3
http://dx.doi.org/10.1111/gpr.1985.33.issue-3
http://dx.doi.org/10.1111/gpr.1985.33.issue-3
http://dx.doi.org/10.1111/gpr.1985.33.issue-3
http://dx.doi.org/10.1111/gpr.1985.33.issue-3
http://dx.doi.org/10.1190/1.1441414
http://dx.doi.org/10.1190/1.1441414
http://dx.doi.org/10.1190/1.1441414
http://dx.doi.org/10.1190/1.1440403
http://dx.doi.org/10.1190/1.1440403
http://dx.doi.org/10.1190/1.1440403
http://dx.doi.org/10.1190/geo2011-0103.1
http://dx.doi.org/10.1190/geo2011-0103.1
http://dx.doi.org/10.1190/geo2011-0103.1

