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ABSTRACT

An inversion-based algorithm for computing the time-
frequency analysis of reflection seismograms using con-
strained least-squares spectral analysis is formulated and
applied to modeled seismic waveforms and real seismic data.
The Fourier series coefficients are computed as a function of
time directly by inverting a basis of truncated sinusoidal ker-
nels for a moving time window. The method resulted in spec-
tra that have reduced window smearing for a given window
length relative to the discrete Fourier transform irrespective of
window shape, and a time-frequency analysis with a combi-
nation of time and frequency resolution that is superior to the
short time Fourier transform and the continuous wavelet
transform. The reduction in spectral smoothing enables better
determination of the spectral characteristics of interfering re-
flections within a short window. The degree of resolution im-
provement relative to the short time Fourier transform
increases as window length decreases. As compared with
the continuous wavelet transform, the method has greatly im-
proved temporal resolution, particularly at low frequencies.

INTRODUCTION

Seismic spectral decomposition (e.g., Partyka et al., 1999) trans-
forms each reflection seismogram into a time-frequency space that
represents localized frequency content as a function of seismic re-
cord time. Thus, individual seismic volumes are transformed into
multiple frequency volumes that preferentially highlight geophysi-
cal responses that appear within particular frequency bands. Com-
monly used spectral decomposition methods, such as the Fourier
transform and the continuous wavelet transform (CWT) generally
require a trade-off between time and frequency resolution that may
render them ineffective in particular cases for certain interpretation

applications, such as layer thickness determination and direct hy-
drocarbon detection. The objective of this paper is to introduce
and evaluate the effectiveness of constrained least-squares spectral
analysis (CLSSA) as a seismic spectral decomposition method and
show that it has resolution advantages over the conventional
approaches.
Fourier-based spectral decomposition uses a sliding temporal

window, which limits temporal and frequency resolutions. In spec-
tral analysis of seismic events that are near in time to other arrivals,
it is often necessary to sacrifice frequency resolution by using a
short time window to isolate the event of interest. Figure 1 illustrates
this fundamental problem in spectral decomposition: A pair of re-
flection coefficients from the top and base of a thin layer is
bracketed by nearby strong reflection coefficients. When convolved
with a wavelet, the reflection event from the thin layer has interfer-
ence at its fringes with side-lobes from the bracketing reflections.
The correct spectral response for the thin layer (a cosine function
times the Ricker spectrum) should have a notch at 50 Hz corre-
sponding to the first spectral notch of the even impulse pair. As
emphasized by Partyka et al. (1999), the frequency at which this
notch occurs could be used to determine the layer time thickness,
which is of great potential utility for predrill estimates of reservoir
volumetrics. To make use of the notch occurrence, the window cho-
sen for spectral analysis must be short enough to avoid interference
with nearby reflectors, but long enough so that window-smearing
effect on the spectrum does not change the notch location. Unfor-
tunately, as illustrated in Figure 1, this may not be achievable in
practice. A Hann window short enough to avoid interference
(40 ms in this case) results in a Fourier spectrum that is dominated
by the window spectrum, and the notch and peak frequencies do not
directly reflect the layer characteristics — which would thereby
yield an incorrect reservoir thickness estimate. Longer windows
yield spectral estimates that are corrupted by the interfering energy,
and again yield misleading spectral notch frequencies that would
result in incorrect thickness estimates. In such a situation, it would
be advantageous to be able to use a short-window without the
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corresponding loss of frequency resolution inherent in the use of the
Fourier transform.
Short windows are desirable for the temporal isolation of parti-

cular portions of seismic traces to obtain spectra and spectral attri-
butes (such as peak frequency and amplitude at peak frequency) that
are relevant to the characteristics of a given layer. However, the
Fourier similarity theorem (e.g., Bracewell, 1986) requires that
shorter windows of a given shape have poorer frequency resolution
that can mask and modify spectral characteristics. Using a given
window shape, better frequency resolution only can be achieved
with the Fourier transform at the expense of poorer time resolution
by increasing the window length. Reducing the window effect in
seismic time-frequency analysis is, thus, of great potential practical
significance.
One approach toward reducing the window effect is to circum-

vent the Fourier transform, and solve directly for the Fourier series
coefficients using least-squares analysis within a window (Vaníček,
1969). The Fourier transform is indeed the least-squares solution for
the Fourier series coefficients, only when the sinusoidal basis func-
tions are orthogonal. When seismic data are windowed, this defini-
tion is violated for those frequencies for which the window length is
not an integer number of periods. The well-known consequence is
smearing of the data spectrum computed with the Fourier transform
by the window transfer function. However, this effect is a result of
the definition of the Fourier transform requiring that the sinusoidal

bases are uncorrelated, not a necessary consequence of Fourier ana-
lysis (which is the determination of the Fourier series coefficients).
The Fourier transform only is one of many possible means of
solving for those coefficients. From the point of view of determin-
ing the Fourier series coefficients of a time series within a window,
the window-smearing effect arises from what can be considered the
incorrect implicit requirement of the windowed Fourier transform
that the sinusoidal bases are orthogonal over the window length.
This results in the Fourier transform yielding the spectrum of the
windowed data rather than the spectrum of the data within the win-
dow. Seismic time-frequency analysis by direct solution of the nor-
mal equations for the Fourier series coefficients when the sinusoidal
bases are not orthogonal has, perhaps surprisingly, not been re-
ported upon in the seismic spectral decomposition literature. Such
an approach is complicated by the fact that the inversion for these
coefficients is nonunique, and constraints are thus required.
We refer to the application of constraints to the solution of the

normal equations for the Fourier series coefficients as CLSSA. We
can expect the results of CLSSA to be very dependent on the con-
straints applied, the assumptions made, and the parameters chosen.
Nevertheless, as time-frequency analysis generally is nonunique,
this should not deter us from investigating the potential benefits
of such a method.
For our purpose of investigating possible improvements in seis-

mic spectral decomposition that will allow the use of shorter

Figure 1. Windowed spectral analysis of an even reflection coefficient pair contained within a thicker even reflection coefficient pair. Hor-
izontal lines represent windows of different lengths used to compute the spectra. Plots show (a) an even reflection coefficient pair (10-ms thick)
within a series of Hann window limits with a thicker even reflection coefficient pair (100-ms thick) falling just at the limits of the longest DFT
window, (b) the convolution of the reflectivity series with a 30 Hz Ricker wavelet, and (c) the Fourier transform computed using the series of
Hann windows and the analytical spectrum.
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windows than are practicable with the ordinary Fourier transform,
we formulate and apply an algorithm that applies model and data
constraints in a particular manner using well-known numerical
methods that commonly have been used for other applications.
Use of other algorithms and other constraints to invert the normal
equations certainly are feasible. Our objective is only to show the
potential value of the general CLSSA approach for time-frequency
analysis of reflection seismograms. In particular, we will assess the
temporal and frequency resolution that can be achieved with our
CLSSA algorithm, and compare results to the short-time Fourier
transform (STFT) and the CWT for synthetic and real seismic data,
as these are presently the two most commonly used spectral decom-
position methods in exploration geophysics practice.

HISTORICAL BACKGROUND

Spectral decomposition of reflection seismograms is introduced
as a seismic interpretation technique by Partyka et al. (1999). He
recognizes that seismic frequency spectra using short windows were
greatly affected by local reflectivity spectra, and thus carried infor-
mation about layer characteristics. He shows that simple layers of
certain thicknesses exhibit notched spectra, and that the pattern of
frequencies at which these notches occur sometimes can be used to
infer layer thickness. He also shows that, for this reason, seismic
images at different frequencies preferentially illuminate, or respond
to, geological variations differently. Spectral time-frequency analy-
sis has since become an important practical seismic interpretation
tool that has achieved widespread use.
Early spectral decomposition work primarily used (1) the STFT,

which is equivalent to the crosscorrelation of the seismic trace with
a sinusoidal basis over a moving time window, (2) the CWT, which
is the crosscorrelation of the seismic trace against a wavelet diction-
ary, and (3) matching pursuit decomposition (MPD), which is the
decomposition of the seismic trace into basis atoms. The use of
these methods for seismic time-frequency analysis is discussed
by Chakraborty and Okaya (1995).
The literature is rich in papers discussing geological applications

of seismic spectral decomposition, a few of which are mentioned
here. The STFT is successfully applied for stratigraphic and struc-
tural visualization (e.g., Partyka et al., 1999; Marfurt and Kirlin,
2001). Marfurt and Kirlin (2001) derive a suite of attributes, includ-
ing peak frequency, from spectral decomposition volumes to effi-
ciently map stratigraphic features, particularly fluvial channels.
These frequency attributes are described further and applied by
Liu and Marfurt (2007). Sinha et al. (2005) apply the CWT for
stratigraphic visualization and direct hydrocarbon indication. Matos
et al. (2010) compute CWT spectral decomposition phase residues
as an attribute for stratigraphic interpretation. Castagna et al. (2003)
and Fahmy (2008) use MPD for direct hydrocarbon detection.
Partyka (2005), Puryear (2006), and Puryear and Castagna
(2008) describe the use of spectral decomposition as a driver for
thin-layer reflectivity inversion.
Higher resolution seismic spectral decomposition methods would

assist in the interpretation of geological features masked by spectral
smearing (when the STFT is used) or poor temporal resolution at
low frequencies (when the CWT is used). Toward this end, we
revisit Fourier theory and then formulate an alternative approach
to seismic spectral decomposition using CLSSA, which potentially
has advantages over conventional methods, such as the STFT and

CWT, in terms of improved temporal and/or frequency resolution of
seismic reflection data.

METHODS

Fourier transform

The Fourier transform is the mathematical basis of the STFT used
in spectral decomposition. The Fourier transform projects infinite
sinusoidal bases on the signal and is thus the LMSE solution for
the Fourier series coefficients

GðfÞ ¼
Zþ∞

−∞

gðtÞe−i2πftdt; (1)

where t is time, f is frequency, gðtÞ is the continuous time signal,
and GðfÞ is the continuous complex spectrum. This simple projec-
tion of the bases onto the time series is applicable because the bases
are infinite and thus orthogonal. The Fourier transform spectrum is
continuous and aperiodic in time and frequency (i.e., there are no
periodic frequency wrapping effects in the limit dt → 0). In digital
applications, however, use of the discrete Fourier transform (DFT)
assumes discretely sampled and periodic series in the time and
frequency domains.
The DFT is the modification of the Fourier transform for appli-

cation to discrete signals. In computing the DFT, the sinusoidal
basis functions are only orthogonal when their periods are integer
fractions of the period of the lowest nonzero frequency. The DFT is
defined as follows

GðkΔfÞ ¼
XN−1

n¼0

gðnΔtÞe−2πi
N kΔfnΔt; k ¼ 0; : : : ; N − 1;

(2)

where N is the number of time samples, n is the time sample index,
Δt is the time increment, k is the frequency sample index, Δf is the
frequency increment, gðnΔtÞ is the discretely sampled time signal,
and GðkΔfÞ is the discretely sampled complex spectrum.
Although the DFT yields integrated information about the entire

trace, seismic signals typically contain variations in frequency con-
tent as a function of time. To capture local anomalies related to
stratigraphy, structure, and fluid content, we must apply a time-
frequency transform that maximizes time-localization of spectral
features. The STFT is the DFT applied as a function of time using
a sliding time window (that usually is tapered to have a desired
transfer function). This amounts to crosscorrelation of orthogonal
sinusoidal basis functions with a windowed segment of the
signal. First, the time-time panel gw is derived from the windowed
signal and expressed as a function of window center and window
sample

gwðnΔt; mΔtÞ ¼ wðmΔtÞgððnþmÞΔtÞ n ¼ 0; : : : ; N − 1

and m ¼ −ðM − 1Þ∕2; : : : ; ðM − 1Þ∕2; (3)

where n is analysis time sample (center of the window), m is the
window sample index, M is the number of samples in the window,
wðmΔtÞ is the window function (usually tapered toward zero at the
endpoints to minimize the Gibbs effect) and gwðnΔt; mΔtÞ is the
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windowed time-time panel as a function of window position and
window sample. Second, the forward STFT is defined as the
DFTof a time-time panel over the dimension of the window sample
model. This results in a time-frequency panel

GðnΔt; kΔfÞ ¼
XðM−1Þ∕2

m¼−ðM−1Þ∕2
gwðnΔt; mΔtÞe−2πi

M kΔfmΔt: (4)

The projection of the infinite sinusoidal bases onto the windowed
portion of the time series by the DFT occurs only over the length of
the window. This is equivalent to truncating the bases to the window
length; the sinusoidal bases then are no longer generally orthogonal
with the exception of those that have an integer number of cycles
within the window length. Thus, the windowed DFT does not give
the spectrum of the data within the window but the spectrum of the
windowed time series that has data (perhaps tapered) within the
window and zeros outside the window. By the Fourier convolution
theorem, this results in a spectrum that is the convolution of the true
spectrum of the data with the spectrum of the window. This spectral
smoothing causes a loss of frequency resolution and an increase in
the bandwidth of the spectrum. Thus, for real-time series, the stan-
dard deviation about the mean of the positive frequencies of the
spectrum of the windowed data always will be greater than the stan-
dard deviation of the positive frequencies of the true spectrum.
When the data are windowed, the sinusoidal uncorrelated bases

are spaced at a frequency increment of df ≥ 1∕T, where T is the
window time length MΔt. When the orthogonality condition is not
met, the DFT can be thought of as “leaking” energy among frequen-
cies. For an extensive treatment of the subject of Fourier transform
windowing and associated spectral leakage, see Bracewell (1986).
However, the reduced frequency resolution of the STFT is not a

fundamental limitation of Fourier theory. It is a consequence of the
STFT definition (i.e., the use of orthogonal basis functions inside a
short time window). For very short windows, the resulting spectrum
may bear little resemblance to the spectrum of the data. To compute
the spectrum of the data within the window, rather than the spectrum
of the windowed data, we must invert the normal equations with
nonzero off diagonal terms and, thus, properly solve for the Fourier
series coefficients. We shall see that such proper application of
Fourier theory can significantly increase the resolvability of fre-
quency components, particularly when appropriate constraints
are applied.

Continuous wavelet transform

The CWT is a narrowband filter applied to the signal in the time
domain using stretched versions of a mother wavelet; it decomposes
the seismic data into octave or suboctave scales of the original data.
The CWT is described by Grossman et al. (1989) and Mallat (1999).
Chakraborty and Okaya (1995) apply CWT spectral decomposition
to seismic data. For seismic applications, the semi-orthogonal Mor-
let wavelet is commonly preferred. The forward CWT for a real
wavelet dictionary is as follows:

Wða; bÞ ¼ 1ffiffiffi
a

p
Z

Ψ
�
t − b
a

�
sðtÞdt; (5)

where a is a scaling parameter, b is a translation parameter, Ψ is the
mother wavelet, sðtÞ is the signal, and Wða;bÞ is the CWT scale

decomposition. As typically applied, the CWT produces scales
of the data. A scale corresponds to a more or less narrow frequency
band, and one could view the center frequency of these bands as
output frequencies. To compute frequencies instead of scales, Sinha
et al. (2005) define a time-frequency CWT, which is the DFT of the
inverse CWT. In this paper, we use the standard CWT process
described by equation 5 above, with the frequency axis representing
the center frequency of Morlet atoms, as this is a commonly
employed method.
CWT solutions suffer from resolution limitations that are similar

to the DFT, although CWT resolution varies with scale or fre-
quency; the resulting decomposition has low time resolution/
high-frequency resolution at low frequencies and high time resolu-
tion/low-frequency resolution at high frequencies (e.g., Sinha et al.,
2005; Puryear et al., 2008).

Inversion-based spectral analysis

Seismic spectral decomposition is a trace-by-trace operation.
Because each 1D seismic trace is converted to a 2D time-frequency
panel, the process expands the dimensions of the original data via a
nonunique transformation, suggesting an inversion-based approach
to the problem. Several investigators have used different empirical
criteria to define inversion-based spectral analysis methods.
Vaníček (1969) iteratively finds the best least-squares fit coeffi-

cients for sines and cosines, subtracts and repeats the process on the
residual until the algorithm converges. Oldenburg (1976) uses the
first Dirichlet criterion of the Backus-Gilbert linear inverse to com-
pute the DFT of potential field data, while minimizing the effects of
recording gaps and noise. Sacchi and Ulrych (1996) derive a similar
functional using a Bayesian inversion approach to estimate the 2D
spectral signature of a limited linear array of receivers. The results
show minimal side lobe artifacts, resulting in significant extrapola-
tion of the wavefield aperture beyond the original receiver array. In a
method related to the Vaníček method, Xu et al. (2005) derive an
algorithm for reducing leakage of spatial spectra by iteratively
solving for and subtracting the most energetic wavenumber compo-
nents from the signal. This is similar to matching pursuit decom-
position with nonorthogonal wavelets, which can be unstable.
None of these methods have been applied to time-frequency ana-
lysis of reflection seismograms for interpretation of, or inversion
for, layer characteristics.
Daubechies et al. (2008) describes the general mathematical con-

vergence of Lp norm functionals, including the minimum support
functional, for computationally cumbersome problems. Although
Daubechies et al. (2008) do not explicitly apply their method to
the problem of time-frequency analysis of signals, we use a similar
approach for application to the problem of seismic spectral decom-
position. Unlike Daubechies et al. (2008), in the particular imple-
mentation we use in this study, we apply Tikhonov regularization to
the functional and because our matrices are not computationally
large, solve the problem analytically by Lagrange multipliers as
described in the following section.

CLSSA description

Following the Portniaguine and Castagna (2004) approach
to seismic wavelet decomposition and reflectivity inversion, we
invert the normal equations by applying an iteratively reweighted
least-squares regularization algorithm to the complex spectral
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decomposition inverse problem using a minimum support func-
tional, which is defined by Last and Kubik (1983) and Portniaguine
and Zhdanov (1998). This regularization scheme incorporates a
priori constraints, differing from postinversion weighting schemes
that impose constraints on the solution after the inversion process.
Prior publications do not describe the application of such a method
to direct solution of the normal equations for the Fourier Series
coefficients. The following inversion formulation is applied to
the data within each window centered at a time sample, then looped
over each sample of a trace.
We start with the definition of the forward problem

Fm ¼ d; (6)

where F is the kernel matrix with real or complex sinusoidal basis,
m is the model parameter vector (unknown frequency coefficients),
and d is the windowed seismic data. For the problem of spectral
decomposition of reflection seismograms, the data are real. How-
ever, in the CLSSA algorithm we present here, we can take d to
be a segment of a complex seismic trace,

d ¼ dr þ idi; (6a)

where dr is the windowed segment of the real seismic trace, and di
is the windowed segment of the Hilbert Transform of the seismic
trace. This is not a requirement of the CLSSA approach, but is a way
of applying additional constraint to further stabilize the solution for
short window lengths. We further define d0 as the trace sample at
the center of the window.
The solution to 6 is achieved using well-known normal equations

F�Fm ¼ F�d: (7)

We choose the columns of matrix F to consist of complex sinu-
soidal signals truncated by the endpoints of the window in the time
domain

Fðt; fÞ ¼ cosð2πkΔfmΔtÞ þ i sinð2πkΔfmΔtÞ: (8)

The number of columns in F is the number of frequencies, and the
number of rows in F is the number of samples in the time window.
Unless otherwise stated, the complex form of F is used for the ex-
amples in this paper (in some examples, only the real part is used).
The inverse problem objective is to compute m given F and d. The
ordinary LMSE solution to equation 6 from the normal equations is

m ¼ ðF�FÞ−1F�d; (9)

where * denotes the complex conjugate transpose. When the sinu-
soids are (or are assumed to be) uncorrelated, F�F ¼ I and
equation 9 reduces to

m ¼ F�d; (10)

which is equivalent to the DFT of the trace segment.
When the data are windowed, however, the elements of F are

generally correlated, and constraints are required to achieve a un-
ique solution. To constrain the inversion of equation 6, we introduce
diagonal matrices Wm and Wd, which are, respectively, model and
data weights, whereas Wm changes iteratively. The initial model
weighting matrix on the first iteration is

Wm ¼ I. (11)

Because Wd remains constant throughout the iterations, for a Hann
taper,

Wd ¼ Diag

�
0.5þ 0.5 cos

�
2πnΔt

l

��
absðd0Þ; (12)

where l is window length, nΔt is time relative to the window center,
absðd0Þ is the data envelope value (instantaneous amplitude) at the
center of the window, which scales the sinusoids to the data, and the
operator Diagð Þ transforms a vector to a diagonal matrix containing
the argument vector on the main diagonal. ApplyingWd andWm to
equation 6, we obtain

WdFWmðWmÞ−1m ¼ Wdd: (13)

We introduce the weighted quantities

Fw ¼ WdFWm (14a)

and

mw ¼ W−1
m m; (14b)

and recast equation 13 as a model and data weighted ill-posed
inverse problem:

Fwmw ¼ Wdd: (15)

To solve equation 15, we apply Tikhonov regularization, which is
similar to the method of Marquardt (1963). Following Tikhonov
and Arsenin (1977), we reformulate ill-posed equation 15 by repla-
cing it with a well-posed minimization problem. This is accomplished
by defining the Tikhonov parametric functional in the space of
weighted model parameters (Portniaguine and Zhdanov, 1998):

kFwmw −Wddk2 þ αkmwk2 ¼ min; (16)

where α is a regularization parameter that can be varied to control the
sparsity and stability of the solution. We set α to a fraction of the
maximum value along the diagonal of the weighted Gram matrix

α ¼ αFfmax½diagðFwF�
wÞ�g; (17)

where αF is a fractional multiplier and the operator diag takes the
diagonal of a matrix. Thus, α varies with each iteration step. We
choose the αF value empirically to allow from .1% to 1% misfit
to the data. As shown below, our selection of αF is chosen so that
the method is robust to noise present in the data.
Writing the analytical Lagrange solution to equation 16

(Portniaguine, 1999),

mw ¼ F�
wðFwF�

w þ αIÞ−1Wdd: (18)

The matrix inversion in equation 18 is computed by Gaussian elim-
ination. The model parameters are reconstructed by

m ¼ Wmmw; (19)

where m is the computed frequency spectrum of the data.
This is the first step of an iteratively reweighted least-squares reg-

ularization algorithm (Ni ¼ 1, were Ni is the number of iterations).
When the window is a boxcar, Ni ¼ 1 and α ¼ 0, and di is taken to
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be zero, m is equivalent to the DFT of the data if the frequencies
selected are the DFT frequencies and no imaginary part is used.
Otherwise, in this first step, when α ≠ 0 and is small,m is a smooth
spectrum that is tighter than the DFT. Figure 2 shows spectra for a
30-Hz Ricker wavelet windowed with a 40-ms Hann tapered win-
dow centered on the waveform. The full CLSSA solution, m, using
Ni ¼ 1 and αF ¼ .001 closely approximates the analytical spectrum
of the Ricker wavelet while the Fourier transform is much broader
and exhibits the wrong peak frequency. The CLSSA result without
utilizing the imaginary part, is not quite as good, but far better than
the Fourier transform. This is significant because, as no Hilbert
operator is applied, CLSSA using only the real waveform has pre-
cisely the same temporal resolution as the Fourier transform while
having greatly improved frequency resolution. This indicates that,
for a given window, CLSSA has a better Heisenberg uncertainty
product (standard deviation of the waveform in time multiplied
by the standard deviation of the spectrum) than does the Fourier
transform. Thus far, we have not found a window for which this
is not the case.
Figure 2 does illustrate an issue at near-zero frequencies. The

Ricker wavelet is zero mean and thus should have zero amplitude
at zero frequency. However, the mean value over a short window is
nonzero and time variant. In fact, it is unclear what is meant by time
localization at zero frequency. Let us assume that we have a short
time window over which the signal is a constant value. This could

be a windowed square wave, box car, step function, constant DC
value, etc. All have different analytical spectra, but no windowed
spectral analysis method would have the ability to locally recognize
the true spectrum in this case. As a practical matter, the shorter the
window, the less meaningful the low frequency values will be.
If more compact spectra are desired (as would be the case for

known sparse spectra, or to sharpen frequency peaks for attribute
analysis) additional iterations can be performed. The model weights
are updated by

Wm ¼ DiagðabsðmÞÞ: (20)

Equation sequence (equations 18, 19, and 20) is iterated Ni times
according to the desired compaction of the model space. Useful
rules of thumb seem to be Ni ¼ 1 for least compactness, Ni ¼ 2

for intermediate compactness, and Ni ¼ 10 for most compactness
(sparsest solution). In general, the shorter the window, the greater
the number of iterations needed to compact the spectrum.
Figure 3 shows Ricker wavelet spectra for a very short (20 ms)

Hann window. In this case, two iterations with αF ¼ .001 were re-
quired for a close match to the analytical spectrum. We also include
the result obtained setting αF ¼ 0 to demonstrate the differences
among the solutions and the impact of αF. In this example,
for complex CLSSA, using a nonzero αF improves the solution

Figure 2. Comparison of results for STFT, CLSSA (Ni ¼ 1, αF ¼ .001) and real valued CLSSA (Ni ¼ 1, αF ¼ .001) applied to a 30-Hz
Ricker wavelet using a 40-ms Hann window function. Plots show (a) the Ricker wavelet with Hann window function and (b) comparison of the
analytical Ricker spectrum to STFT and CLSSA. CLSSA closely matches the analytical spectrum, while the STFT strongly broadens the
spectrum. The real CLSSA solution is intermediate to the CLSSA and STFT.
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significantly. This illustrates the need for synthetic modeling to em-
pirically select CLSSA parameters.
The values of m at iteration Ni is the frequency spectrum of

the data at the center of the given time analysis window. For
time-frequency analysis, the window is shifted along the seismic
trace, andmw is computed at each time sample to generate a complete
2D time-frequency panel. Because only the data within the short win-
dow are inverted at any given computational step, the Gram matrix
FwF�

w is small, and memory limitations are not significant.
The sequence described here is presented as only one represen-

tative means of constraining the least-squares spectral analysis.
Other constraints, analysis window types, or numerical methods
can potentially be applied. Our main objective is to demonstrate
the improvements in resolution that can be obtained by solving di-
rectly for the Fourier coefficients using constrained least squares.

RESULTS

Thin layer example

Figure 4 shows the application of CLSSA to the interfering thin
layer example shown in Figure 1 where the Fourier transform was
unable to characterize the thin layer spectrum properly with any
window length. It can be seen that for the 40-ms window (which
is the largest window without interference effects), CLSSA closely
approximates the desired spectrum, locates the notch almost exactly,

and gives a slightly wrong peak frequency. This is in contrast to the
Fourier transform result with the same window length which exhi-
bits very misleading notch and peak frequencies.

Application to analytical waveforms

Analytical waveforms with known frequency spectra are used to
compare CLSSA to the STFT and CWT (see Figure 5). Waveforms
tested include six cases: (a) a single 20-Hz sinusoid; (b) a pair of
20- and 50-Hz beating sinusoids; (c) a 20- to 50-Hz chirp signal;
(d) a single 30-Hz Ricker wavelet; (e) an even pair of interfering
Ricker wavelets, each with 30-Hz peak frequency and 10-ms spa-
cing; and (f) an odd pair of interfering Ricker wavelets, each with
30-Hz peak frequency and 10-ms spacing. The trace length is
200 ms, and the sample rate is 1 ms. We computed the STFT
and CLSSA of these models using a 40-ms Hann window (the
CWT basis function length varies with frequency).
Figure 6 shows the time-frequency panels from the application of

the STFT to the six analytical waveforms shown in Figure 5. On the
sinusoid waveform frequency panels, we observe that the indepen-
dent frequencies are poorly resolved due to frequency smearing.
This smearing is caused by the convolution of the data spectrum
with the window transfer function. The STFT results for all model
waveforms have notches in time. The time notch period in Figure 6a
is inversely related to frequency:

Figure 3. Comparison of results for STFT, CLSSA (Ni ¼ 2, αF ¼ .001) and real-valued CLSSA (Ni ¼ 2, αF ¼ .001) applied to a 30-Hz
Ricker wavelet using a 20-ms Hann window function. Plots show (a) the Ricker wavelet with Hann window function and (b) comparison of the
analytical Ricker spectrum to STFT, CLSSA, and real-valued CLSSA. CLSSA closely matches the analytical spectrum, while the STFT
strongly broadens the spectrum. The real CLSSA solution frequency resolution is slightly better than the STFT. Note that, for complex CLSSA,
the use of nonzero αF improves the accuracy of the method for this example.

Application of CLSSA to seismic data V149

Downloaded 14 Sep 2012 to 75.148.212.146. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



Tsin ¼ 1∕ð2 � FsinÞ ¼ 1∕ð2 � 20 HzÞ ¼ 25 ms; (21)

where Fsin is the sinusoid frequency and Tsin is the time notch period.
For multiple sinusoids (Figure 6b), we observe superposition of
notches in time. The STFT of the chirp signal (Figure 6c) also shows
frequency smearing around the smoothly varying peak frequency
within the window and temporal notching. For the Ricker wavelet
models, note the smearing of sidelobe energy to zero frequency
(referred to as DC). Even and odd dipole pairs have characteristic
notch periods in the frequency domain (Marfurt and Kirlin, 2001;
Puryear and Castagna, 2008) that are determined by layer time thick-
ness. These notches are important interpretive features (Partyka et al.,
1999) and also drive spectral inversion for layer thickness (Puryear
and Castagna, 2008). If the notches are misplaced, serious interpreta-
tion errors can result. The frequency notch period (Fbed) of an even
dipole with thickness Tbed ¼ 10 ms should be

Fbed ¼ 1∕Tbed ¼ 1∕.01 s ¼ 100 Hz: (22)

For the analytical spectrum of the even pair, a peak occurs at 0 Hz and
a notch occurs at Fbed∕2 ¼ 50 Hz. On the STFT panel, we observe
the notch at approximately 75 Hz due to spectral smearing. In a con-
ventional spectral decomposition analysis, this would result in a large
error in layer thickness determination. An analytical odd dipole pair
has notches at 0 Hz and 100 Hz, which are not readily observable
in these models due to limited wavelet bandwidth. In general, on

application of the STFT to real seismic data traces, we expect to ob-
serve time notching, frequency smearing, and artificial translation of
reflectivity notches to other misleading frequencies.
Figure 7 shows the time-frequency panels from the application of

the CWT to the six analytical waveforms shown in Figure 5. The
CWT was computed with a Morlet wavelet dictionary. On the
sinusoid waveform frequency panels, we observe that the CWT
has better low-frequency spectral resolution than does the STFT
(Figure 7a). Furthermore, the CWT has better spectral resolution
at 20 Hz than at 50 Hz (Figure 7b). In Figure 7c, we observe a
smooth decrease in frequency resolution as a function of increasing
frequency and decreasing Morlet basis independence. However, for
the CWT, higher frequency resolution is achieved at the cost of time
resolution. The Ricker panels show very significant smoothing
across time at low frequencies; this smoothing effect diminishes
as frequency increases. For the even dipole pair CWT (Figure 7e),
the reflectivity notch occurs close to the 50-Hz analytical notch. On
application of the CWT to real seismic data traces, we expect poor
time resolution and high-frequency resolution at low frequencies
and high time resolution and poor frequency resolution at high fre-
quencies.
Figure 8 shows the time-frequency panels from the application of

the CLSSA to the six analytical waveforms shown in Figure 5. For
models 8a–8c, Ni ¼ 10; and for models 8d–8f, Ni ¼ 1. On the
sinusoid waveform frequency panels, we observe nearly perfect
resolution of frequency content. The frequency coefficients are

Figure 4. Windowed spectral analysis of an even dipole reflection pair contained within a thick even reflection coefficient pair. Plots show
(a) an even reflection coefficient pair (10-ms thick) with a thicker even reflection coefficient pair (100-ms thick) falling outside the window,
(b) the convolution of the reflection coefficient series with a 30 Hz Ricker wavelet, and (c) the spectrum computed using a 40-ms Hann-
windowed STFT and CLSSA (Ni ¼ 1, αF ¼ .001) together with the analytical spectrum. CLSSA locates the spectral notch much more ac-
curately than the equivalent-window STFT.
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not smeared into their neighbors (i.e., there is no significant win-
dow-smearing effect or spectral leakage). This observation is sig-
nificant in that the neighboring frequency components are not well
separated by the STFT. The CLSSA Ricker wavelet results also
show obvious improvement in low-frequency time-resolution rela-
tive to the CWT and frequency resolution relative to the STFT and
CWT. The CLSSA Ricker spectra are more compact because they

are not broadened by windowing effects. In Figure 8e, the expected
thin-bed notch appears close to the correct location (50 Hz) within
the wavelet band. On application to real seismic data traces, we ex-
pect significant improvement in frequency resolution over the STFT
and the time-frequency resolution product over the STFTand CWT.
To further illustrate differences among the STFT, CWT, and

CLSSA, we extract spectra at the time midpoint of the analytical

Figure 5. Six trace models with length 200 ms and sampling rate 1 ms. Plots show (a) a single sinusoid at 20 Hz (b) a pair of sinusoids 20 Hz
and 50 Hz superimposed, (c) a chirp frequency sweep between 20 and 50 Hz (d) a single Ricker wavelet with a peak frequency of 30 Hz, (e) an
even pair of two interfering Ricker wavelets with peak frequencies of 30 Hz and 10-ms spacing, and (f) an odd pair of two interfering Ricker
wavelets with peak frequencies of 30 Hz and 10 ms spacing. The horizontal lines represent a 40-ms time window centered at 101 ms.
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Figure 6. Six panels illustrating application of the STFT using a window length of 40 ms to the six trace models with length 200 ms and
sampling rate 1 ms shown in Figure 5. Figure shows STFT results for (a) a single sinusoid at 20 Hz, (b) a pair of sinusoids at 20 and 50 Hz
superimposed, (c) a chirp frequency sweep between 20 and 50 Hz, (d) a single Ricker wavelet with a peak frequency of 30 Hz, (e) an even pair
of two interfering Ricker wavelets with peak frequencies of 30 Hz and 10 ms spacing, and (f) an odd pair of 2 interfering Ricker wavelets with
peak frequencies of 30 Hz and 10 ms spacing.

V152 Puryear et al.

Downloaded 14 Sep 2012 to 75.148.212.146. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



Figure 7. Six panels illustrating application of the CWT with a Morlet wavelet dictionary to the six trace models with length 200 ms and
sampling rate 1 ms shown in Figure 5. Figure shows CWT results for (a) a single sinusoid at 20 Hz, (b) a pair of sinusoids 20 Hz and 50 Hz
superimposed, (c) a chirp frequency sweep between 20 Hz and 50 Hz, (d) a single Ricker wavelet with a peak frequency of 30 Hz, (e) an even
pair of two interfering Ricker wavelets with peak frequencies of 30 Hz and 10 ms spacing, and (f) an odd pair of two interfering Ricker
wavelets with peak frequencies of 30 Hz and 10-ms spacing.
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Figure 8. Six panels illustrating application of the CLSSA using a window length of 40 ms to the six trace models with length 200 ms and
sampling rate 1 ms shown in Figure 5. Figure shows CLSSA results for (a) a single sinusoid at 20 Hz, (b) a pair of sinusoids 20 and 50 Hz
superimposed, (c) a chirp frequency sweep between 20 and 50 Hz, (d) a single Ricker wavelet with a peak frequency of 30 Hz, (e) an even pair
of two interfering Ricker wavelets with peak frequencies of 30 Hz and 10 ms spacing, and (f) an odd pair of two interfering Ricker wavelets
with peak frequencies of 30 Hz and 10-ms spacing. For models (a-c), Ni ¼ 10; and for models (d-f), Ni ¼ 1.
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waveform traces and compare them to their respective analytical
spectra (Figure 9). In Figure 9a and 9b, the STFT has a very strong
DC component that is more representative of the spectrum of the
Hann taper than of the data themselves. The CWT produces a spec-
trum that is more narrowly centered on the model sinusoid frequen-
cies, although frequency resolution is still imperfect. The CLSSA

closely matches the exact analytical solution. The waveform illu-
strated in Figure 9c has no analytical solution because frequency
varies continuously with time. However, the average frequency
within the centrally located window is approximately 35 Hz. In ap-
plying the 40-ms window, the window-smearing effect renders the
STFT ineffective for spectral analysis of the waveform. The CLSSA

Figure 9. Six plots comparing the STFT, CWT, CLSSA, and the analytical spectra of the six trace models shown in Figure 5 at the center of the
trace (t ¼ 101 ms). The STFT and CLSSA used a window length of 40 ms. Figure shows the comparison for (a) a single sinusoid at 20 Hz,
(b) a pair of sinusoids 20 and 50 Hz superimposed, (c) a chirp frequency sweep between 20 and 50 Hz, (d) a single Ricker wavelet with a peak
frequency of 30 Hz, (e) an even pair of two interfering Ricker wavelets with peak frequencies of 30 Hz and 10-ms spacing, and (f) an odd pair
of two interfering Ricker wavelets with peak frequencies of 30 Hz and 10 ms spacing. For models a-c, Ni ¼ 10; and for models d-f, Ni ¼ 1.
Reflectivity notching patterns obscured by the DFT and CWT are apparent in the CLSSA 2D spectral panel result.
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computed spectra of the Ricker wavelet waveforms are narrower
than those computed by the STFT and closer to the analytical spec-
trum. Note the accurate position of the notch for CWT and CLSSA
in Figure 9e.

Effect of varying Ni

To assess the impact of varying the number of iterations Ni of the
method, we plot solutions for different Ni values applied to a 30-Hz
Ricker wavelet within a 40-ms window in Figure 10. It is clear that
while the CLSSA result for Ni ¼ 1 closely approximates the true
Ricker spectrum, increasing the number of iterations generates pro-
gressively sparser solutions. In the limit, these solutions tend toward a
three-sinusoid model as Ni increases. Thus, the Ricker wavelet with-
in the windowed portion of the data can be modeled well as three
beating sinusoids. Figure 11 shows the time-domain reconstruction
of the Ricker wavelets within the window for the suite of Ni values.
Note that, while results for differentNi closely match the signal with-
in the window, the smooth Ni ¼ 1 spectrum produces the best match
outside the window and the most compact time domain representa-
tion of the signal. As further iterations (i.e., Ni > 1) drive more
frequency compactness, one observes increasing energy outside of

the analysis window because the signal is approximated by fewer
sinusoidal waveforms.

Application to layered synthetic traces

We constructed layered blocky impedance synthetic models com-
prised of even and odd reflectivity dipoles in series. To demonstrate
robustness in the presence of noise, we added noise having an L2-
norm equal to .1 times the L2-norm of the signal. Time thicknesses
are varied from 0 to 32 ms with a layer center spacing of 100 ms.
The wavelet, reflectivity models, and resulting convolutional syn-
thetic models are illustrated in Figure 12a–12c and 13a–13c. We
applied the STFT, CWT, and CLSSA (Ni ¼ 1) to the even and
odd synthetic events (Figures 12d–12f and 13d–13f). We used a
40-ms Hann-tapered window for the STFT and CLSSA. The STFT
artifacts obscure the systematic reflectivity patterns and event iden-
tification in the frequency domain. The CWT suffers from the use of
low frequency wavelets to analyze the low frequency components.
These wavelets are temporally nonlocalized, and mix information
from disparate reflectors. Hence, interferences between not only
the bounding surfaces of individual thin layers but also interferences
between nearby layers themselves are observed in the time-

frequency panels as low-frequency streaking arti-
facts. This effect can lead to false inferences about
local reflectivity. The CWT spectrum is not instan-
taneous; and, therefore, cannot quantify localized
reflectivity spectra. In contrast, the CLSSA re-
solves the systematic shift in reflectivity notches
(decreasing notch frequency with increasing thick-
ness) and resolves top and base events 12-ms thick
and greater for the even pair and 24-ms thick and
greater for the odd pair. This difference in apparent
resolution is due to the fact that a perfectly odd
dipole conforms to the classical Widess (1973) re-
solution limit while the even impulse pair does not
(see Puryear and Castagna, 2008). Also, the odd
dipole pair notch occurs at higher frequencies than
the even dipole notch (and can be outside the band
of the data), thereby obscuring high-frequency ex-
pressions of temporal thickness.

Resolution analysis

To better understand the time and frequency
resolution characteristics of the STFT and the
CLSSA (Ni ¼ 1), we applied the transforms
using a range of window lengths centered on a
Hann-tapered Ricker wavelet, and quantified
the results using the standard deviation from
the peak frequency of the spectrum as a measure
of frequency resolution. This analysis would not
be meaningful on the CWT because the effective
window length is a function of frequency. In
Figure 14, we plot the frequency standard devia-
tion around peak frequency normalized by peak
frequency versus the window length normalized
by period of the peak frequency. The normaliza-
tion is scale independent.
Becausewindowing always broadens the Fouri-

er spectrum, the standard deviation is traditionally

Figure 10. Solutions for different Ni values applied to a 30-Hz Ricker wavelet within a
40-ms window. Although Ni ¼ 1 closely approximates the true Ricker spectrum, in-
creasing the number of iterations generates progressively sparser solutions. In the limit,
these solutions tend toward a three-sinusoid model as Ni increases (i.e., Ni ¼ 9). Thus,
the Ricker wavelet within the windowed portion of the data could be accurately modeled
as three beating sinusoids.
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used to measure frequency resolution (see discussion of Heisen-
berg’s uncertainty principle in Bracewell, 1986). We used CLSSA
with and without the Hilbert operator. When using only the real
waveform, CLSSA has exactly the same window length as the
Fourier transform; the plot thus proves that real CLSSA has better
frequency resolution and Heisenberg uncertainty product than the

Fourier transform. For full CLSSA, the Hilbert operator senses data
somewhat outside of the analysis window, so the comparison to
Fourier is less exact. Nevertheless, the improvement in frequency
resolution is clear, particularly for window lengths greater than
twice the period corresponding to the peak frequency, where
real and full CLSSA converge in resolution. As window length

Figure 11. Time-domain reconstruction of the Ricker wavelets within the window for the suite of Ni values. Note that, while all values of Ni
closely match the signal within the window, the smooth Ni ¼ 1 spectrum produces the best match outside the window and most compact time
domain representation of the signal. As further iterations (i.e., Ni > 1 ) drive more frequency compactness, one observes increasing energy
outside of the analysis window because the signal is approximated by fewer sinusoidal waveforms. However, note that notched spectra domi-
nated by reflectivity might be better modeled by Ni > 1.
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is reduced toward the period of the peak frequency, resolution of
real CLSSA approaches that of the Fourier transform. Below the
period of the peak frequency, real CLSSA becomes unreliable
and the comparison is less meaningful. It can be seen that for short
windows, the stabilizing influence of using the Hilbert operator
results in superior frequency resolution.

Real data trace frequency panels

We compare the STFT, CWT, and CLSSA using frequency pa-
nels for a seismic data set with a bright spot associated with a known
hydrocarbon accumulation. If well control is available, Ni should
be chosen based on synthetic modeling. In the absence of well

Figure 12. Even dipole pair synthetic reflectivity model with increasing thickness as a function of time. To demonstrate robustness in the presence
of noise, we added noise having an L2-norm equal to .1 times the L2-norm of the signal. Figure shows (a) Ricker wavelet with center
frequency ¼ 30 Hz, (b) reflectivity model, (c) synthetic model trace, (d) STFT applied to the synthetic trace using a window length of 40 ms,
(e) CWT using a Morlet wavelet dictionary applied to the synthetic trace, and (f) CLSSA (Ni ¼ 1) applied to synthetic trace using a window
length of 40 ms. The three methods show comparable robustness in the presence of noise. Reflectivity notching patterns related to thickness
are obscured by the DFTand CWT, and apparent in the CLSSA spectral panel result. Temporal separation of events is better for the CLSSA result,
which resolves layers as thin as approximately 12 ms at high frequencies (arrow). For beds thinner than this threshold, the events merge.
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control, we chose Ni ¼ 3 because it reveals high-resolution peak
frequency trends in the up-dip and down-dip example traces. In
Figures 15 and 16, we display frequency panels through the forma-
tion at the bright spot (t ¼ 350 ms) and correlative down-dip
(t ¼ 365 ms) sand locations. Displayed are the original trace,

time-frequency gathers for the STFT, CWT, and CLSSA, peak fre-
quency for each method, and standard deviation in frequency for
each method. To fix the time resolution while studying frequency
resolution, we applied the STFT and CLSSA using identical 20-ms
Hann-tapered windows.

Figure 13. Odd dipole pair synthetic reflectivity model with increasing thickness as a function of time. To demonstrate robustness in the
presence of noise, we added noise having an L2-norm equal to .1 times the L2-norm of the signal. Figure shows (a) Ricker wavelet with
center frequency ¼ 30 Hz, (b) reflectivity model, (c) synthetic model trace, (d) STFT applied to the synthetic trace using a window length of
40 ms, (e) CWT applied to synthetic trace, and (f) CLSSA (Ni ¼ 1) applied to synthetic trace using a window length of 40 ms. The three
methods show comparable robustness in the presence of noise. None of the events are resolved by the STFT and CWT. Reflectivity notching
patterns obscured by the CWTare apparent in the STFTand CLSSA spectral panels. CLSSA exhibits sharper spectral notches defining thin bed
dipoles in the time domain. Temporal separation of events is observed for layers as thin as approximately 24 ms at high frequencies (arrow). For
layers thinner than this threshold, the notching, observed at high frequencies, moves outside the data. The three methods show robustness in the
presence of noise.
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The CWT has very poor time resolution at low frequencies,
and is dominated by the mixing of low-frequency energy from
nearby reflectors in the temporal vicinity of the bright spot
(Figure 15). The STFT result includes the doublet artifact of

the trough over peak reservoir event, resulting from a strong
DC bias when the short window predominantly isolates a single
positive or negative waveform loop. Although the STFT and
CLSSA show comparable time resolution fixed by the choice

Figure 14. Frequency resolution test for Hann-windowed STFT and CLSSA (Ni ¼ 1, αF ¼ .001) spectra of a Ricker wavelet. We compute
standard deviation from the peak frequency. Plots show: (a) a 30 Hz Ricker wavelet signal, (b) the true Ricker wavelet spectrum, and
(c) weighted standard deviation computed on the STFT, CLSSA (Ni ¼ 1, αF ¼ .001), and real CLSSA (Ni ¼ 1, αF ¼ .001) frequency spectra
(normalized by the peak frequency) for Hann windows ranging from 20 to 100 ms (normalized by the peak frequency period in the plot)
applied to the Ricker wavelet. CLSSA has a significantly smaller weighted standard deviation than the STFT (i.e., the computed spectra are
narrower for all window lengths within this standard use range). Real CLSSA shows similar advantages for longer windows (window length/
peak frequency period > 2). For very long windows, the standard deviation results of all methods converge.
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of window length, the CLSSA frequency section yields superior
detail of the frequency characteristics of the bright spot sand.
The STFT frequency energy is smeared across the spectrum
and outside the bandwidth of the data, yielding poor frequency

resolution and shifting the peak frequency to the high end of the
spectrum. CLSSA spectral energy is not smeared outside the ac-
tual data bandwidth at the upper limit, although a local DC com-
ponent appears at the side-lobes due to the short window. It is

Figure 15. Up-dip real data trace with spectral decomposition and associated attributes (reservoir is at approximately t ¼ 350 ms). Plots
show (a) the original synthetic trace, (b) the 20-ms window STFT result, (c) the CWT result, (d) the 20-ms window CLSSA (Ni ¼ 3) result,
(e) thresholded peak frequencies where amplitude is greater than 2% of maximum amplitude and DC peak frequencies are excluded, and
(f) thresholded amplitude-weighted standard deviations where amplitude is greater than 2% of maximum amplitude.
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noteworthy that the CLSSA yields high-frequency resolution
and accuracy using such a short window, whereas spectral dis-
tortion from the STFT renders it unsuitable for spectral analysis
using the same short window.

We computed peak frequencies and standard deviations where
trace sample amplitudes were greater than 2% of the maximum am-
plitude, excluding DC peak frequencies (an artifact of the short win-
dow). Peak frequency versus time for the up-dip sand is shown in

Figure 16. Down-dip real data trace with spectral decomposition and associated attributes (down-dip brine is at approximately t ¼ 365 ms).
Plots show (a) the original synthetic trace, (b) the 20-ms window STFT result, (c) the CWT result, (d) the 20-ms window CLSSA (Ni ¼ 3)
result, (e) thresholded peak frequencies where amplitude is greater than 2% of maximum amplitude and DC peak frequencies are excluded, and
(f) thresholded amplitude-weighted standard deviations where amplitude is greater than 2% of maximum amplitude.
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Figure 15e. Note the significantly higher STFT peak frequencies at
the reservoir and the correlative down-dip sand due to spectral
smearing. In general, the CLSSA yields higher peak frequency es-
timates than the CWT, which is biased toward low-frequency en-
ergy. Mean peak frequencies are 40.56 for the STFT, 16.67 for
the CWT, and 25.95 for CLSSA. Standard deviation versus time
for the up-dip sand is plotted in Figure 15f. Like peak frequencies,
standard deviations about the mean frequency of the STFT are con-
sistently and significantly higher than those of the CWT and
CLSSA. CLSSA generally has lower standard deviation values than
the CWT (it has better frequency resolution). Mean standard devia-
tions are 4.98 for the STFT, 2.02 for the CWT, and 1.59 for CLSSA.
On the down-dip section (Figure 16), it also is clear that CLSSA

is more sensitive to local peak frequency variation than STFT and
CWT and that its standard deviations are lower. We anticipate that
CLSSA will produce better stratigraphic resolution on frequency
attribute maps. While amplitudes are dimmer on the down-dip sec-
tion, peak frequencies are lower, indicating possible changes in the
reflectivity spectrum.

Application to 3D seismic data

We apply the methods studied in this paper to a Gulf of Mexico
seismic data set that images a levied turbidite channel. The data
show a shale-filled turbidite with bright spot sand levies that are
producing reservoirs. An amplitude extraction on the turbidite hor-
izon is shown in Figure 17. The large-scale stratigraphic feature
masks many smaller features that potentially can be revealed using
spectral decomposition.
Figure 18 shows the original data with prominent brightspot

overbank deposits and 5-Hz isofrequency vertical sections along
the black section line shown in Figure 17. We display results from
real and complex Hann-windowed CLSSA (Ni ¼ 1, αF ¼ .001) to
enable a more exact windowed comparison between CLSSA and
STFT. We note that the thicker portion of the overbank deposit
is highlighted at 5 Hz by complex CLSSA. However, neither the
real CLSSA nor the STFT effectively capture this low-frequency
feature. The omission can be attributed to the fact that complex
CLSSA preferentially accounts for low-frequency information
due to the effect of the Hilbert transform, which translates low-fre-
quency information from outside the window into the windowed
portion. The CWT has extremely low temporal resolution at low
frequencies, and reveals little useful information. At 40 Hz
(Figure 19), thinner portions of the overbank deposit are highlighted
by real and complex CLSSA. These appear as nearly symmetrical
amplitude peaks migrating laterally from the thicker center of the
overbank deposit. The predicted two-way temporal thickness at
these locations is thus 1∕40 Hz ¼ 25 ms. The STFT also shows
anomalous amplitude in the vicinity of these peaks, but these am-
plitudes are not spatially isolated as are the CLSSA results. We in-
terpret this to be the effect of spectral smearing of energy from other
portions of the spectrum, which homogenizes the isofrequency re-
sponse and suppresses frequency anomalies of interest. Thus, for
this short 20-ms window, accurate thickness prediction of these
areas of the overbank deposit can be achieved by the real and com-
plex CLSSA but not by the STFT.
A key benefit of using spectral decomposition interpretation is

the identification of stratigraphic architectural features not obvious
in broadband amplitude maps. The features “tune” or resonate at
particular frequencies or within a very narrow frequency band.

By tracking the peak frequency, which is the frequency with the
highest amplitude across the spectrum, one can highlight strati-
graphic features and map thickness. Figures 20, 21, and 22 show
peak frequency maps on the turbidite horizon for the 40-ms STFT,
CWT, and 20-ms CLSSA (Ni ¼ 1, αF ¼ .001). Because CLSSA
preferentially incorporates low-frequency information from outside
the window by the Hilbert transform, we plot 40-ms STFT results to
provide adequate low-frequency resolution to compare the results.
The STFT result, while revealing portions of the channel architec-
ture, shows limited lateral continuity. Black arrows indicate the pos-
sible location of the channel trunk. The CWT peak frequency result
(Figure 21) is plotted with the black arrows in the same position as
the CLSSA result. This map reveals sections of the channel,
although not sufficiently to decipher the sinuous geometry of the
trunk. This is attributed to the fact that the CWT low-frequency
mother wavelets integrate information from above and below the
channel so that the local low-frequency time response is not cap-
tured. The CLSSA result (Figure 22) shows the thick trunk of
the channel highlighted at low frequencies. Details of the planview
geometry of the trunk feature not noticeable on the original ampli-
tude section (Figure 17) can be observed in the peak frequency map-
view, enabling inferences about the structure of the trunk. Using
CLSSA, improved frequency resolution contributes to the spectral
decomposition interpretation, enabling the mapping of stratigraphic
features by providing a different view of the objective.

DISCUSSION

Our modeling and real data spectral decomposition results show
noteworthy improvement in resolution that follows from the appli-
cation of fundamental principles of Fourier theory discussed in this
paper. To generate valid time-frequency signal decompositions
representative of the data within the window, rather than the wind-
owed data, application of the Fourier transform requires that the
basis sinusoids be orthogonal. Generally, Fourier theory is to this
day still commonly applied using implicit analog assumptions,

Figure 17. Amplitude on horizon of a levied turbidite channel sys-
tem from a Gulf of Mexico data set. Black line shows the location of
vertical sections in Figures 18 and 19.
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Figure 18. The 5-Hz vertical isofrequency sections the black line show in Figure 17. STFT and CLSSA results were achieved using a Hann
window. Plots show (a) original data (b) 20-ms STFT result, (c) CWT result (d) 20-ms Hann-windowed CLSSA (Ni ¼ 1, αF ¼ .001) using
only the real part of the signal, and (e) 20-ms Hann windowed CLSSA (Ni ¼ 1, αF ¼ .001) using the complex signal. Arrows show the thicker
part of the overbank deposit that is highlighted by complex CLSSA, which captures low frequencies well. The CWT integrates surrounding
information and fails to isolate the channel. Neither the STFT nor the real CLSSA capture the low-frequency information for the very short
window.
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Figure 19. The 40-Hz vertical isofrequency sections along the black line show in Figure 17. STFT and CLSSA results were achieved using a
Hann window. Plots show (a) original data, (b) 20-ms STFT result, (c) CWT result, (d) 20-ms Hann-windowed CLSSA (Ni ¼ 1, αF ¼ .001)
using only the real part of the signal, and (e) 20 ms Hann windowed CLSSA (Ni ¼ 1, αF ¼ .001) using the complex signal. Arrows show the
thinner edges of the overbank deposit that is highlighted by complex and real CLSSA, both of which resolve the higher frequencies well. The
CWT captures the frequency information but is not well resolved in time. The STFT smears information across the spectrum, and the thick-
nesses that respond preferentially to 40 Hz are not isolated.
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while the signals themselves have evolved to digital. Practitioners
have learned to understand and deal with the consequences of win-
dowing; however, in digital applications, it is not necessary to
assume that the off-diagonal terms of the normal equations are zero,
as the Fourier transform implicitly does. Windowing effects can be
mitigated by incorporating a priori information. For short windows,
the STFT produces a set of sparse, evenly spaced spectral coeffi-
cients, resulting in dilution of spectral information content. Instead

of being projected onto the continuous frequency domain, energy is
restricted to discrete frequencies, resulting in distortion. Further-
more, there is no a priori information incorporated into the STFT
formulation to favor resolution of the seismic band of interest.
With the development of modern computational science and

inverse theory, these limitations of the STFT are surmountable. In-
stead of independently crosscorrelating the signal with each ortho-
gonal basis, we solve the normal equations with nonzero off-
diagonal terms, thereby significantly reducing spectral component
leakage. To do so robustly requires constraints, and our CLSSA for-
mulation readily incorporates such constraints. Thus, the inversion
for frequency coefficients can be formulated by including a priori
knowledge of the signals through Wm.
The complex trace effectively lengthens the window according to

frequency. The Hilbert transform operator incorporates more infor-
mation from outside the window at low frequencies than at high
frequencies. In this sense, the complex CLSSA can be considered
as having a frequency-dependent window. More importantly, the
complex trace permits the use of infinitesimally short windows.
For example, in the limit, we can use just one sample window.
In that case, CLSSA will produce instantaneous phase and fre-
quency of one equivalent sinusoidal function.
The results of applying CLSSA towaveform models and real data

traces validate the theoretical improvement in spectral resolution,
and the hypothesis that the time-frequency product limitation can
be improved over conventional methods. An additional benefit
of the CLSSA method is that it does not require even sampling
of the data in time or space, and can therefore be readily applied
to a variety of seismic processing, inversion, and analysis problems.
It is inferred that different types of signals will exhibit spectral-sta-
tistical characteristics that can be exploited by inversion formula-
tions tailored to these characteristics. However, further modeling
and case studies on seismic data are required to better understand
the potential applications in identification and interpretation of geo-
logical features of interest.

Figure 20. Mapview of STFT peak frequency section on the turbi-
dite system shown in Figure 17. The STFT was computed using a
40-ms Hann window. While the turbidite trunk is visible in some
locations, the lack of frequency resolution degrades lateral continu-
ity and hinders the peak frequency mapping interpretation.

Figure 21. Mapview of CWT peak frequency section on the turbi-
dite system shown in Figure 17. Black arrows are in the same loca-
tions as those shown in Figure 20. However, the turbidite trunk
expression is less continuous and more difficult to track on the
CWT result due to poor temporal localization at low frequencies.

Figure 22. Mapview of CLSSA (Ni ¼ 1, αF ¼ .001) peak fre-
quency section on the turbidite system shown in Figure 17. The
CLSSA result was computed using a 20-ms Hann window. Black
arrows indicate the main turbidite trunk that is revealed by the peak
frequency attribute extracted on CLSSA.
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There are a variety of avenues for future research aimed at
furthering the CLSSA method: improved inversion algorithms,
combination of window types and lengths, better use of STFT
and CWT results as constraints, handling the DC problem better
etc. We have attempted to show the promise of the CLSSA ap-
proach; however, several complete case study comparisons to STFT,
CWT, and other methods, etc., will be needed before definitive con-
clusions can be drawn.
Whether or not one is convinced that CLSSA spectra are superior

to those obtained using the CWT or STFT, the simple fact that the
results are different is significant. Time-frequency analysis is non-
unique, and there is no correct answer. A different valid answer may
prove to be a useful addition to multiattribute analysis in a given
circumstance.

CONCLUSIONS

We developed an inversion-based algorithm for computing the
spectral decomposition of seismic data using CLSSA and tested
the algorithm on synthetic waveforms and real data. The decompo-
sition is performed by the inversion of a basis of truncated sinusoi-
dal kernels in a short time window. The method results in a time-
frequency analysis with frequency resolution and time-frequency
product superior to the STFT and the CWT. The classical spectral
smoothing inherent to Fourier spectral analysis of windowed data is
reduced or eliminated, thereby allowing analysis of the spectral
characteristics of composite reflections within windows signifi-
cantly shorter than those used in previously published spectral de-
composition work. We demonstrated the efficacy of the CLSSA
transform on six synthetic waveforms. For sinusoidal waveforms,
spectral content was resolved nearly perfectly using CLSSA,
whereas frequency smearing effects dominated the STFT and
CWT spectra. Ricker wavelet spectra were also well resolved within
the short window. In all cases, the CLSSA spectra had narrower
bandwidth than the CWT and STFT spectra due to the absence
or reduction of window-smearing effects. The real-data trace fre-
quency panel results showed improvements in the spectral analysis
of a bright spot, including narrower frequency spectra and more
detailed peak frequency trends potentially related to geological
characteristics. Application of the method to a seismic data set con-
taining a turbidite channel system resulted in the tentative interpre-
tation of architectural elements not observed using conventional
spectral decomposition methods.
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