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Spectral decomposition of seismic data with continuous-wavelet transform

Satish Sinha1, Partha S. Routh2, Phil D. Anno3, and John P. Castagna1

ABSTRACT

This paper presents a new methodology for com-
puting a time-frequency map for nonstationary signals
using the continuous-wavelet transform (CWT). The
conventional method of producing a time-frequency
map using the short time Fourier transform (STFT)
limits time-frequency resolution by a predefined win-
dow length. In contrast, the CWT method does not
require preselecting a window length and does not
have a fixed time-frequency resolution over the time-
frequency space. CWT uses dilation and translation of
a wavelet to produce a time-scale map. A single scale
encompasses a frequency band and is inversely propor-
tional to the time support of the dilated wavelet.

Previous workers have converted a time-scale map
into a time-frequency map by taking the center frequen-
cies of each scale. We transform the time-scale map by
taking the Fourier transform of the inverse CWT to pro-
duce a time-frequency map. Thus, a time-scale map is
converted into a time-frequency map in which the am-
plitudes of individual frequencies rather than frequency
bands are represented. We refer to such a map as the
time-frequency CWT (TFCWT).

We validate our approach with a nonstationary syn-
thetic example and compare the results with the STFT
and a typical CWT spectrum. Two field examples illus-
trate that the TFCWT potentially can be used to de-
tect frequency shadows caused by hydrocarbons and to
identify subtle stratigraphic features for reservoir char-
acterization.

INTRODUCTION

Seismic data, being nonstationary in nature, have vary-
ing frequency content in time. Time-frequency decomposition
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(also called spectral decomposition) of a seismic signal aims
to characterize the time-dependent frequency response of
subsurface rocks and reservoirs. Castagna et al. (2003) use
matching-pursuit decomposition for instantaneous spectral
analysis to detect low-frequency shadows beneath hydrocar-
bon reservoirs. A case history of using spectral decomposition
and coherency to interpret incised valleys is shown by Pey-
ton et al. (1998). Partyka et al. (1999) use windowed spec-
tral analysis to produce discrete-frequency energy cubes for
applications in reservoir characterization. Hardy et al. (2003)
show that an average frequency attribute produced from sine
curve-fitting strongly correlates with shale volume in a partic-
ular area.

Since time-frequency mapping is a nonunique process,
various methods exist for time-frequency analysis of nonsta-
tionary signals. Jones and Baraniuk (1995) describe a data-
adaptive method. The widely used short-time Fourier trans-
form (STFT) method produces a time-frequency spectrum
by taking the Fourier transform over a chosen time window
(Cohen, 1995). In STFT, time-frequency resolution is fixed
over the entire time-frequency space by preselecting a window
length. Therefore, resolution in seismic data analysis becomes
dependent on a user-specified window length.

Over the past two decades, the wavelet transform has been
applied in many branches of science and engineering. The
continuous-wavelet transform (CWT) provides a different ap-
proach to time-frequency analysis. Instead of producing a
time-frequency spectrum, it produces a time-scale map called
a scalogram (Rioul and Vetterli, 1991). Since scale represents
a frequency band, it is not intuitive if we wish to interpret
the frequency content of the signal. Some workers (Hlawatsch
and Boudreaux-Bartels, 1992; Abry et al., 1993) take scale
to be inversely proportional to the center frequency of the
wavelet and represented the scalogram as a time-frequency
map.

This paper provides a novel approach for mapping the
time-scale map into a time-frequency map. Time-frequency
CWT (TFCWT; Sinha, 2002) analysis provides high-frequency
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resolution at low frequencies and high time resolution at high
frequencies. This optimal time-frequency resolution property
of the TFCWT makes it useful in seismic data analysis.

Computing the TFCWT in the Fourier domain is a fast pro-
cess. Furthermore, TFCWT is an invertible process such that
the inverse Fourier transform of the time summation of the
TFCWT reconstructs the original signal, provided the inverse
wavelet transform exists. For our purposes we require only the
forward transform; reproducibility is not a strict requirement.

Seismic data analysts sometimes observe low-frequency
shadows in association with hydrocarbon reservoirs. The
shadow is probably caused by attenuation of high-frequency
energy in the reservoir itself (Dilay and Eastwood, 1995;
Mitchell et al., 1997), such that the local dominant frequency

Figure 1. A chirp signal consisting of two known hyperbolic sweep frequencies with
constant amplitude for each frequency.

Figure 2. A spectrogram of the chirp signal using a 400-ms
window length. Notice that the lower frequencies are well re-
solved but the higher frequencies are not resolved.

moves toward the low-frequency range. Thus, anomalous low-
frequency energy is concentrated at or beneath the reser-
voir level. The low frequencies are probably not caused by
inelastic attenuation. Ebrom (2004) lists about ten possible
mechanisms. High-frequency resolution at low frequencies,
given by the TFCWT, helps detect these shadows. On the
other hand, high time resolution at high frequencies can en-
hance stratigraphic features from seismic data. Marfurt and
Kirlin (2001) investigate how tuning frequency varies with
thickness and use spectrally decomposed data to resolve thin
beds.

In this paper, we derive a formula to convert a scalogram
to a TFCWT. We begin by comparing the TFCWT spectrum
for a hyperbolic chirp signal with the CWT spectrum and the

STFT. Then we calculate TFCWT spec-
tra for two real data sets, one from Nige-
ria and another publicly available from the
Stratton field, south Texas. In the first ex-
ample, we show that single-frequency vi-
sualization of a seismic section in the fre-
quency domain with the TFCWT reveals
low-frequency anomalies associated with
hydrocarbon reservoirs. In the second ex-
ample, we show that single-frequency slices
along a horizon can be used to enhance
stratigraphic features.

TIME-FREQUENCY MAP FROM STFT

The Fourier transform f̂ (ω) of a signal f (t) is the inner
product of the signal with the basis function eiωt , i.e.,

f̂ (ω) = 〈f (t), eiωt 〉 =
∫ ∞

−∞
f (t)e−iωtdt, (1)

where t is time. A seismic signal, when transformed into the
frequency domain using the Fourier transform, gives the over-
all frequency behavior; such a transformation is inadequate
for analyzing a nonstationary signal. We can include the time
dependence by windowing the signal (i.e., taking short seg-
ments of the signal) and then performing the Fourier trans-
form on the windowed data to obtain local frequency informa-
tion. Such an approach of time-frequency analysis is called the
short-time Fourier transform (STFT), and the time-frequency
map is called a spectrogram (Cohen, 1995). The STFT is given
by the inner product of the signal f (t) with a time-shifted win-
dow function φ(t). Mathematically, it can be expressed as

ST FT (ω, τ ) = 〈f (t), φ(t − τ )eiωt 〉

=
∫ ∞

−∞
f (t)φ̄(t − τ )e−iωtdt, (2)

where the window function φ is centered at time t = τ , with τ

being the translation parameter, and φ̄ is the complex conju-
gate of φ.

We show a spectrogram computed for a chirp signal (Fig-
ure 1) with two hyperbolic frequency sweeps in Figure 2. We
use a 400-ms-long Hanning window for this computation. Note
in the spectrogram that the low frequencies are well resolved
and the high frequencies are either poorly resolved or not vis-
ible at all. The reason is because the frequency resolution is
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fixed by the preselected window length and is recognized as
the fundamental problem of the STFT in spectral analysis of a
nonstationary signal.

TIME-FREQUENCY MAP FROM CWT (TFCWT)

The CWT is an alternative method to analyze a signal. In
the CWT, wavelets dilate in such a way that the time sup-
port changes for different frequencies. Smaller time support
increases the frequency support, which shifts toward higher
frequencies. Similarly, larger time support decreases the fre-
quency support, which shifts toward lower frequencies. Thus,
when the time resolution increases, the frequency resolution
decreases, and vice versa (Mallat, 1999).

A wavelet is defined as a function ψ(t) ∈ L2(�) with a zero
mean, localized in both time and frequency. By dilating and
translating this wavelet ψ(t), we produce a family of wavelets:

ψσ,τ (t) = 1√
σ

ψ

(
t − τ

σ

)
, (3)

where σ, τ ∈ � and σ is not zero and σ is the dilation parameter
or scale. Note that the wavelet is normalized such that the L2-
norm ‖ψ‖ is equal to unity. The CWT is defined as the inner
product of the family of wavelets ψσ,τ (t)with the signalf (t).
This is given by

FW (σ, τ ) = 〈f (t), ψσ,τ (t)〉=
∫ ∞

−∞
f (t)

1√
σ

ψ̄

(
t − τ

σ

)
dt,

(4)

where ψ̄ is the complex conjugate of ψ and FW (σ, τ ) is the
time-scale map (i.e., the scalogram). The convolution integral
in equation 4 can be computed easily in the Fourier domain.
The choice for the scale and the translation parameter can be
arbitrary, and we can choose to represent it any way we like.
To reconstruct the function f (t) from the wavelet transform,
we use Calderon’s identity (Daubechies, 1992), given by

f (t) = 1
Cψ

∫ ∞

−∞

∫ ∞

−∞
FW (σ, τ )ψ

(
t − τ

σ

)
dσ

σ 2

dτ√
σ

. (5)

For the inverse transform to exist, we require that the analyz-
ing wavelet satisfy the admissibility condition, given by

Cψ = 2π

∫ ∞

−∞

|ψ̂(ω)|2
ω

dω < ∞, (6)

where ψ̂(ω) is the Fourier transform of ψ(t) and where Cψ

is a constant for wavelet ψ . The integrand in equation 6
has an integrable discontinuity at ω = 0 and also implies
that

∫
ψ(t)dt = 0. A commonly used wavelet in continuous-

wavelet transform is the Morlet wavelet, defined as (Torrence
and Compo, 1998)

ψ0(t) = π−1/4eiω0t e−t2/2, (7)

where ω0 is the frequency and is taken as 2π to satisfy the
admissibility condition. The center frequency of the Morlet
wavelet being inversely proportional to the scale provides an
easy interpretation from scale to frequency.

We note that a scale represents a frequency band and not
a single frequency. The scalogram does not provide a di-
rect intuitive interpretation of frequency. To interpret the

time-scale map, in terms of a time-frequency map, a num-
ber of approaches can be taken. The easiest step would be
to stretch the scale to an equivalent frequency, depending
on the scale-frequency mapping of the wavelet. Typically for
time-frequency analysis, one converts a scalogram to a time-
frequency spectrum using fc/f , where, fc is the center fre-
quency of the wavelet (Hlawatsch and Bartels, 1992). Such
a typical CWT spectrum of the chirp signal using the Morlet
wavelet is shown in Figure 3. However, we take an alterna-
tive approach and compute a frequency spectrum of the signal
using the wavelet as an adaptive window. Because of the Mor-
let wavelet’s dilation property, it is a natural window for sig-
nals that require high-frequency resolution at low frequencies
and high time resolution at high frequencies. The translation
property allows us to examine the frequency content at vari-
ous times, thus leading to a time-frequency map that is adap-
tive to the nonstationary nature of seismic signals. This time-
frequency map is obtained by taking the Fourier transform of
the inverse continuous wavelet transform.

Replacing f (t) from equation 5 into equation 1 gives

f̂ (ω) = 1
Cψ

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

1
σ 2

√
σ

×FW (σ, τ )ψ
(

t − τ

σ

)
e−iωtdσ dτ dt. (8)

Figure 3. A typical CWT spectrum obtained for the chirp sig-
nal shown in Figure 1. It is converted from the scalogram, de-
scribed by equation (4), using the center frequencies of scales.
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Using the scaling and shifting theorem of the Fourier trans-
form, we get∫ ∞

−∞
ψ

(
t − τ

σ

)
e−iωtdt = σ e−iωτ ψ̂ (σω) . (9)

By interchanging the integrals and substituting equation 9 into
equation 8, we obtain

f̂ (ω) = 1
Cψ

∫ ∞

−∞

∫ ∞

−∞

1
σ 2

√
σ

FW (σ, τ )σ ψ̂(σω)e−iωτ dσ dτ ,

(10)

where ψ̂(ω)is the Fourier transform of the mother wavelet.
To obtain a time-frequency map, we remove the integration

over the translation parameter τ and replace f̂ (ω) by f̂ (ω, τ ).
This is given by

f̂ (ω, τ ) = 1
Cψ

∫ ∞

−∞
FW (σ, τ )ψ̂(σω)e−iωτ dσ

σ 3/2
. (11)

Equation 11 is the fundamental equation that allows us to
compute TFCWT. This can also be represented as the inner
product between the wavelet transform of the signal FW (σ, τ )
and a scaled and modulated window given by ψ̂ω(σ ), where
the scaling is over the frequency. For a particular frequency,
we have an appropriately scaled window. The integration in
the inner product space is over all scales, as denoted by equa-
tion 11. This can be represented by

f̂ (ω, τ ) = 〈
FW (σ, τ ), ψ̂ω(σ )

〉
, (12)

where the scaled and modulated window is given by

¯̂ψω(σ ) = ψ̂(σω)e−iωτ

Cψσ 3/2
. (13)

Here, ¯̂ψω(σ ) is the complex conjugate of ψ̂ω(σ ).
Equation 12 shows that the effective window is the scaled

and modulated wavelet that acts on the transformed signal in
the wavelet domain. In contrast, the chosen window in the
STFT directly operates on the time-domain signal given in
equation 2, and the inner product space is integrated over all
times. The time-frequency map generated by equation 11 or
equation 12 from the scalogram FW (σ, τ ) is not obtained by
the direct transformation of a scale to its center frequency;
rather, this map provides energy at the desired frequency and
avoids the complication of overlapping frequency bands com-
mon to a scale-frequency transformation. Equation 11 can be
computed using a two-step procedure. First, we evaluate the
convolution integral in equation 4 to obtain FW (σ, τ ) using
the Fourier transform method. In the second step we use the
Fourier transformation of the scaled and modulated wavelet
to compute the inner product over all scales. Note that the
time summation of equation 11 gives the Fourier transform of
the signal. Thus, reconstructing the original signal is a two-step
process: (1) time summation of the TFCWT and (2) inverse
Fourier transform of the resultant sum.

The synthetic signal (Figure 1) is comprised of two hy-
perbolic sweep frequencies, each having constant amplitude.
In other words, energy in each frequency sweep is constant
with time. The typical CWT spectrum (Figure 3) for the syn-
thetic signal improves time-frequency resolution more than

the STFT spectrum (Figure 2). In the CWT spectrum, the en-
ergies in both frequency trends erroneously decrease with in-
creasing frequency. Considering the fact that the typical CWT
spectrum is computed in terms of frequency bands (i.e., scales)
and is represented by taking the center frequency of the fre-
quency bands, these frequency bands overlap each other and
the overlap increases with increasing frequency. This results in
an apparent loss of energy in the CWT spectrum that can be
confused with attenuation effects which are not present in the
signal. However, the TFCWT spectrum (Figure 4) does not
show any erroneous attenuation. The blurring effect on each
end is because the TFCWT has high-frequency resolution and
low-time resolution at low frequencies and low-frequency res-
olution and high time resolution at high frequencies. Thus, the
TFCWT improves resolution for a nonstationary signal. In ad-
dition to the improvement in the time-frequency resolution,
the new methodology inheriting the CWT avoids the subjec-
tive choice of window length necessary for the STFT.

APPLICATIONS OF TFCWT TO FIELD DATA

Time-frequency spectra produced from the TFCWT can be
used to interpret seismic data in the frequency domain. We
have conducted such analyses with poststack data sets. Adding
a frequency axis to a 2D seismic section makes the data

Figure 4. TFCWT spectrum, described by equation 11, ob-
tained for the chirp signal shown in Figure 1 using a complex
Morlet wavelet.
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three-dimensional. Comparison of single-frequency sections
from such a 3D volume can help detect low-frequency shad-
ows sometimes caused by hydrocarbon reservoirs. Sun et al.
(2002) use instantaneous spectral analysis based on matching-
pursuit decomposition for direct hydrocarbon detection. A
matching pursuit isolates the signal structures that are coher-
ent with respect to a given wavelet dictionary (Mallat and
Zhang, 1993). However, if the signal is composed of several
combinations of fundamental dictionaries, it will be difficult to
choose a particular one to analyze the nonstationary nature. In
the TFCWT, time-frequency decomposition is carried out by
a mother wavelet. This method provides good frequency reso-
lution at low frequencies and is therefore effective in detecting
low-frequency shadows.

A seismic section from a Nigeria data set (Figure 5) shows
bright amplitudes (yellow arrows) adjacent to faults (green ar-
rows), indicative of known hydrocarbon zones. A preferen-
tially illuminated single-frequency section at 20 Hz from the
TFCWT data volume shows high-amplitude, low-frequency

Figure 5. A seismic section from a Nigeria data set. Bright
amplitudes indicated by yellow arrows adjacent to the faults
(green arrows) in this seismic section are known hydrocarbon
zones.

Figure 6. A 20-Hz seismic section obtained using TFCWT pro-
cessing of the seismic data shown in Figure 5. High-amplitude,
low-frequency anomalies (red) are at the hydrocarbon zones
(yellow arrows).

anomalies (red) at the reservoir level (yellow arrows) in
Figure 6. Furthermore, at 33 Hz these anomalies disappear
(Figure 7). In this example these low-frequency anomalies ap-
pear only at the known hydrocarbon reservoirs. Mechanisms
for this low-frequency anomaly are not known. Ebrom (2004)
suggests several possible mechanisms of frequency shadow ef-
fect. The challenge is to determine which are first-order effects
and which are less important. The anomaly above the hydro-
carbon reservoir level (black arrow) in the 33-Hz section is
most likely a very thin-bed interference effect that remains
anomalous at higher frequencies. This example shows that
the comparison of single low-frequency sections from TFCWT
has been able to detect low-frequency anomalies caused by
hydrocarbons.

We extend this idea to stratigraphic analysis by observing a
horizon slice from a 3D volume. Adding a frequency axis to a
3D seismic data volume makes the time-frequency volume 4D
and complicates visualization. To simplify visualization, a 3D
seismic data volume can be rearranged in two-dimensions ac-
cording to the trace numbers or CDPs. Time-frequency anal-
ysis will extend it in the third dimension, adding a frequency
axis to it. From this time-frequency-CDP volume, we can ex-
tract a horizon or time slice and rearrange the trace numbers
according to their inline and crossline numbers to produce a
frequency-space cube [similar to a tuning cube (Partyka et al.,
1999)]. Visualizing single-frequency attributes for a horizon
from such a 3D cube can be used to identify geologic features
that otherwise would not be visible on a usual horizon ampli-
tude map. We utilize the fact that the varying thicknesses tune
at varying frequencies. (For details on tuning frequency mod-
eling, see Marfurt and Kirlin, 2001.)

A horizon slice from the Stratton 3D seismic data volume
is shown in Figure 8b. This horizon slice is taken 16 ms above
the horizon A pick in Figure 8a. A channel, indicated in red,
appears to have branches in the middle of the map toward
the south. From an interpreter’s point of view, knowing the
extension of the possible channel is important information
for reservoir characterization. A 32-Hz frequency slice for the
same horizon slice (Figure 9) shows what could be details of
a fluvial-channel system. We observe a pattern similar to that

Figure 7. A 33-Hz seismic section of Figure 5 obtained using
TFCWT processing. In this section frequency anomalies as-
sociated with frequency shadows are absent (yellow arrows).
The anomaly (black arrow) present in this section is from local
tuning effects and does not disappear at higher frequencies.
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Figure 8. (a) A vertical seismic section through the Stratton 3D data set cor-
responding to line AB shown in (b). (b) A horizon slice through the seis-
mic amplitude volume 16 ms above the horizon A pick shown in (a). A flu-
vial channel (yellow arrow) shows up as a negative-amplitude trough on the
horizon slice and corresponds to the channel shown in (a). The southwestern
branch of this channel is not clear.

Figure 9. A horizon slice at 32 Hz through the TFCWT volume correspond-
ing to the seismic-amplitude map shown in Figure 8b. Note the channel
extension (blue arrows) and internal heterogeneity of the fluvial-channel
system.

of a complex meandering-channel system in the
southwestern part of the figure. Also note that
the apparent internal heterogeneity of the main
fluvial-channel system is enhanced by spectral
decomposition. The relatively low spectral am-
plitude of the channel is indicative of a lithology
change (possibly brine-filled sand).

CONCLUSIONS

A conventional method of computing a time-
frequency spectrum, or spectrogram, using the
STFT method requires a predefined time win-
dow and therefore has fixed time-frequency
resolution. However, to analyze a nonstation-
ary signal where frequency changes with time,
we require a time-varying window. The CWT
dilates and compresses wavelets to provide a
time-scale spectrum instead of a time-frequency
spectrum. Converting a scalogram into a time-
frequency spectrum using the center frequency
of a scale gives an erroneous attenuation in the
spectrum. The TFCWT overcomes this prob-
lem and gives a more robust technique of time-
frequency localization. Since TFCWT is funda-
mentally derived from the continuous-wavelet
transform, wavelet dilation and compression ef-
fectively provides the optimal window length,
depending upon the frequency content of the sig-
nal. Thus, it eliminates the subjective choice of
a window length and provides an optimal time-
frequency spectrum without any erroneous at-
tenuation effect for a nonstationary signal. It has
high-frequency resolution at low frequencies and
high time resolution at high frequencies, whereas
the spectrogram has fixed time-frequency resolu-
tion throughout.

Thus, in nonstationary seismic data analysis
the TFCWT has a natural advantage over the
STFT and the typical CWT spectrum. Though
STFT allows one to analyze an entire strati-
graphic interval, TFCWT is focused on the spec-
tral attributes of horizons rather than intervals.
STFT may be more efficient for estimating the
spectral characteristics of long intervals as com-
pared to the support of the CWT. However,
TFCWT can be summed over time to resolve the
spectrum of any desired interval. The field exam-
ples on single-frequency sections and maps from
the TFCWT presented in this work suggest that
such analysis potentially can be used as direct
hydrocarbon indicators and for improved strati-
graphic visualization.
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