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Summary 
 
This paper introduces a method which spectrally 
decomposes a seismic trace by solving an inverse problem. 
In our technique, the reverse wavelet transform with a 
library of complex wavelets serves as a forward operator. 
The inversion reconstructs the wavelet coefficients that 
represent the seismic trace and satisfy an additional 
constraint. The constraint is needed as the inverse problem 
is non-unique. We show synthetic and real examples with 
three different types of constraints: 1) minimum L2 norm, 
2) minimum L1 norm, and 3) sparse spike, or minimum 
support constraint. The sparse-spike constraint has the best 
temporal and frequency resolution. While the inverse 
approach to spectral decomposition is slow compared to 
other techniques, it produces solutions with better time and 
frequency resolution than popular existing methods. 
 
Introduction 
 
Spectral decomposition is a transformation that 
characterizes spatiotemporal variability in seismic data. 
The spectral decomposition attributes effectively 
differentiate both lateral and vertical lithologic and pore-
fluid changes. Spectral decomposition is particularly 
successful in delineating stratigraphic traps and identifying 
subtle frequency variations caused by hydrocarbons. Thus, 
spectral decomposition research has gained considerable 
momentum in recent years. A number of techniques have 
been studied, such as the Continuous Wavelet Transform 
and Matching Pursuit Decomposition (Chakraborty and 
Okaya 1995, Castagna et al, 2003), and the Discrete Fourier 
Transform (Marfurt and Kirlin, 2001). The multitude of 
existing methods signifies the non-unique nature of 
spatiotemporal transformation. Hence, the search for the 
most convenient and most seismically revealing 
transformation actively continues. 
This paper introduces a new transformation where we 
achieve spectral decomposition by solving an inverse 
problem. Namely, we minimize the objective functional 
which is a weighted sum of a misfit and a stabilizer. In this 
process, the reverse wavelet transform with a library of 
complex wavelets serves as a forward problem. The 
inversion reconstructs the wavelet coefficients that 1) 
represent the seismic trace, and 2) satisfy the constraint. 
The second criterion is needed since the transformation is 
non-unique. The space of coefficients spans time-frequency 
domain, thus it has two dimensions Nf and Nt, where Nf is 
number of frequencies and Nt is number of samples in the 
trace. The seismic trace has only one dimension (Nt). So, 

the inverse problem is grossly underdetermined, and hence 
non-unique. That is, there is more than one way to 
decompose the trace.  

 
The figure above illustrates this point.  The left panel 
shows a synthetic trace with three wavelets, with 
frequencies of 20, 40 and 60 Hz and phases of 0, 90 and 0 
degrees respectively. The next panel shows inverse 
decomposition with minimum L2 norm constraint, the 
second from the right panel shows the decomposition with 
minimum L1 norm constraint, and the right panel shows the 
sparse decomposition. These plots display only the 
amplitude, the phase is not shown, though it is readily 
calculated.   All three decompositions represent the trace, in 
a sense that composing the wavelets with the coefficients 
from any of three distributions matches the trace. 
Mathematically, there is no way to say that one solution is 
better than the other. The only way to differentiate is to 
apply these transformations to many practical cases and 
then subjectively judge which one is more useful for 
interpretation purposes.  

Arguably, the minimum L2 norm solution looks 
similar to results of other known methods (such as CWT) 
that produce smooth distributions. The sparse spike 
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solution has superior resolution in time and frequency. The 
minimum L1 norm solution is less resolved but could be 
more robust in practice than the sparse solution. All three 
solutions produce phase, as an additional useful attribute. 
 
 
Theory 
 
Our theory follows the conventional inverse problem logic. 
We denote the trace as d (the data), the reverse wavelet 
transform as F (the forward modeling operator) and the 
wavelet coefficients as m (the model). Then, the 
mathematical statement of the problem is the minimization 
of the Tikhonov parametric functional: 

min)()( 2 =+− mSdFmreal α  
The first term in this equation is the misfit, which is 
responsible for matching the decomposition with the data. 
The second term is the constraint, which shapes the 
resulting distribution of coefficients. Factor α  is called 
the regularization parameter.   
 We use a library of complex wavelets (translated to 
all times of the trace) to compose operator F.  Hence, the 
solution m is a complex quantity which has both amplitude 
and phase. The choice of the wavelet library (and hence the 
choice of forward operator F) is a critical factor in 
determining the utility of the spectral decomposition. The 
question of choice of the constraint S(m) may be even more 
important due to the tendency of the constraint to influence 
the solution even more than F does, especially for 
underdetermined problems.  So, we focus on S(m). 
 There are a multitude of choices for S. Along with 
the traditional minimum L2 norm constraint 
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that produces smooth and poorly resolved solutions. We 
find minimum L1 norm and sparse spike constraints to be 
particularly interesting. The minimum L1 norm constraint 
is given by the following formula: 
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And the sparse spike constraint is given as: 
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where )max(10 8 m−=β  is a small number, related to 
machine precision. Note that the sparse spike constraint has 
a minimum where the distribution of m has the smallest 
number of non-zeros, i.e. sparse distribution. It is similar to 
the minimum support constraint used in (Portniaguine and 

Zhdanov, 1998, 2002). Except, here we use amplitudes of 
complex values rather than the scalars. Since the numerical 
minimization technique for these types of functionals (re-
weighted conjugate gradient relaxation) is also described in 
(Portniaguine and Zhdanov, 1998, 2002), we do not discuss 
it here.  We only note that the re-weighted relaxation is 
relatively time consuming, which makes inverse 
decomposition methods slow.  However, there is hope of 
significantly speeding it up by incorporating compression 
into the algorithm (Portniaguine and Zhdanov, 2002). 
  
Realistic trace example  
 
We present two examples of the technique. One is the 
decomposition of the realistic seismic trace, shown in the 
Figure to the bottom.  

 
The leftmost panel shows the simulated reflectivity 
(Gaussian noise) and the synthetic trace, produced by 
convolving 30 Hz Ricker wavelet with the reflectivity. The 
next three panels show minimum L2 norm, minimum L1 
norm and sparse decompositions, respectively.  We can see 
that spiky decomposition has much higher frequency and 
time resolution. The decomposition result exhibits 
oscillations of the base wavelet frequency around 30 Hz, 
depending on the local reflectivity spectrum.  While 
advantages of one technique over the other are subjective, 
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they clearly charactarize different levels of details in the 
seismic data. 
 
Real data example  
 
 
The second example we show here is an application of 
spiky decomposition to real seismic data, collected at an 
undisclosed location (below).  

 
 
The figure above shows the sum of sparse spike 
decomposition results at all frequencies. Note the excellent 
horizontal continuity of the spiky coefficients. The 
decomposition reveals different details than can be seen in 
the original seismic section.   
 
 
 
 
 
 
 
 
 
 

 By displaying the panels with individual frequencies 
we reveal the anomalies that are attributable to different 
stratigraphic units within the section. The panel below 
shows the 24 Hz section, while the next panel below shows 
the 9 Hz section. The vertical white line shows the well that 
penetrated water at the level of low-frequency anomaly and 
the gas reservoir at the level of  the 24 Hz anomaly. 
 
 

Discussion 
 
We would like to point out two particular aspects of the 
inverse decomposition. First, it is computationally 
expensive due to the iterative nature of conjugate gradient 
relaxation.   Second, the exact utility of the method remains  
subjective.  We merely state here that our decomposition 
methods produce pictures with different levels of detail, 
while acknowledging that much empirical research remains 
to be done, especially for 3-D cases. 
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